Indexed by:
Abstract:
A major obstacle in realizing Na-ion batteries (NIBs) is the absence of suitable anode materials. Herein, we firstly report the anatase TiO2 mesocages constructed by crystallographically oriented nanoparticle subunits as a high performance anode for NIBs. The mesocages with tunable microstructures, high surface area (204 m(2) g(-1)) and uniform mesoporous structure were firstly prepared by a general synthesis method under the assist of sodium dodecyl sulfate (SDS). It's notable that the TiO2 mesocages exhibit a large reversible capacity and good rate capability. A stable capacity of 93 mAhg (1) can be retained after 500 cycles at 10 C in the range of 0.01-2.5 V, indicating high rate performance and good cycling stability. This could be due to the uniform architecture of iso-oriented mesocage structure with few grain boundaries and nanoporous nature, allowing fast electron and ion transport, and providing more active sites as well as freedom for volume change during Na-ion insertion. CV measurements demonstrate that the sodium-ion storage process of anatase mesocages is mainly controlled by pseudocapacitive behavior, which is different from the lithium-ion storage and further facilitates the high rate capability.
Keyword:
Reprint 's Address:
Version:
Source :
SCIENTIFIC REPORTS
ISSN: 2045-2322
Year: 2015
Volume: 5
5 . 2 2 8
JCR@2015
3 . 8 0 0
JCR@2023
ESI Discipline: MULTIDISCIPLINARY;
ESI HC Threshold:500
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: