• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:魏明灯

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 49 >
Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells SCIE
期刊论文 | 2024 , 8 (8) | SOLAR RRL
Abstract&Keyword Cite Version(2)

Abstract :

Spiro-OMeTAD, as a crucial component of hole-transporting layer (HTL), exhibits limited mobility and conductivity, and the lithium bis-trifluoromethanesulfonimide dopant is sensitive to water vapor, which imposes restrictions on the photovoltaic properties of perovskite solar cells (PSCs). Herein, the iron-porphyrin (FePP) is introduced into Spiro-OMeTAD solution as additive, which facilitates the oxidation process of Spiro-OMeTAD, leading to the enhancement of hole mobility and hole extraction and transport. Besides, the surface Pb2+ defects of perovskite film are cured by the presence of carboxylic acids (-COOH) in FePP. As a result, the photovoltaic properties of PSCs with FePP additive have been improved with a power conversion efficiency (PCE) of 21.58%. Moreover, FePP can further anchor Li+ ions in HTL to prevent it from being invaded by water vapor. Dramatically, the degradation of unencapsulated devices with FePP is suppressed significantly, which retains 82.0% of its original PCE under 10-20% relative humidity (RH) after 7100 h and maintains about 79.6% of its original PCE under 50-60% RH after 1000 h. Thus, this study shows that the design and development of multifunctional HTL additives holds great potential for achieving highly efficient and durable PSCs. The iron-porphyrin additive can not only promote the oxidation of Spiro-OMeTAD and improve the extraction and transport of holes of HTL, but also passivate the Pb2+ defects of perovskite film and prevent the Li+ from being invaded by water vapor, which enhance the power conversion efficiency and stability of perovskite solar cells significantly.image (c) 2024 WILEY-VCH GmbH

Keyword :

additives additives hole-transporting layers hole-transporting layers iron-porphyrin iron-porphyrin preoxidation preoxidation stability stability

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Guo, Minghuang , Liu, Chensi , Wu, Chenchen et al. Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells [J]. | SOLAR RRL , 2024 , 8 (8) .
MLA Guo, Minghuang et al. "Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells" . | SOLAR RRL 8 . 8 (2024) .
APA Guo, Minghuang , Liu, Chensi , Wu, Chenchen , Zhu, Jingwei , Hu, Ping , Li, Yafeng et al. Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells . | SOLAR RRL , 2024 , 8 (8) .
Export to NoteExpress RIS BibTex

Version :

Multifunctional Iron–Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells EI
期刊论文 | 2024 , 8 (8) | Solar RRL
Multifunctional Iron–Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells Scopus
期刊论文 | 2024 , 8 (8) | Solar RRL
Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells SCIE
期刊论文 | 2024 , 270 | SOLAR ENERGY MATERIALS AND SOLAR CELLS
Abstract&Keyword Cite Version(2)

Abstract :

Perovskite solar cells have gradually become the most attractive alternative for next-generation photovoltaic devices due to their excellent photovoltaic conversion efficiencies and low manufacturing costs. Defect engineering is an essential topic for improving the performance of perovskite devices. In this study, we utilize a bifunctional alkylamine sulfonate to modify the perovskite interfaces. The TsO- of sulfonates coordinates with Pb2+, while -NH2 of alkylamine forms hydrogen bonds with iodine, which reduces charge recombination and improves energy level arrangement. The molecular size and the alkylamine's dielectric constant significantly influence the interface modification performance. For the champion device with BATsO treatment, there is an enhancement in both the fill factor and the open-circuit voltage, resulting in a power conversion efficiency (PCE) of 23.53%. After 400 h of working condition, the device maintains roughly 90.40% of its initial efficiency. Therefore, this study postulates that modifying bifunctional alkylamine sulfonates could effectively enhance the PSC's performance.

Keyword :

Double -functional additive Double -functional additive Passivation defects Passivation defects Perovskite solar cells Perovskite solar cells

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Huang, Shaobiao , Wang, Renjie , Zheng, Qiao et al. Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells [J]. | SOLAR ENERGY MATERIALS AND SOLAR CELLS , 2024 , 270 .
MLA Huang, Shaobiao et al. "Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells" . | SOLAR ENERGY MATERIALS AND SOLAR CELLS 270 (2024) .
APA Huang, Shaobiao , Wang, Renjie , Zheng, Qiao , Deng, Hui , Zhang, Caixia , Wang, Weihuang et al. Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells . | SOLAR ENERGY MATERIALS AND SOLAR CELLS , 2024 , 270 .
Export to NoteExpress RIS BibTex

Version :

Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells Scopus
期刊论文 | 2024 , 270 | Solar Energy Materials and Solar Cells
Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells EI
期刊论文 | 2024 , 270 | Solar Energy Materials and Solar Cells
Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells SCIE
期刊论文 | 2024 , 7 (2) , 2232-2243 | ACS APPLIED NANO MATERIALS
WoS CC Cited Count: 3
Abstract&Keyword Cite Version(2)

Abstract :

The optimization of interfacial properties between the perovskite layer and the electron-transporting layer (ETL) is always a vital approach to reduce the defects for improving the photovoltaic performance of the perovskite solar cells (PSCs). Herein, nanomaterials of tunable photoluminescent nitrogen-doped graphene quantum dots (TP-N-GQDs) were prepared though a facile solid-phase microwave-assisted (SPMA) method in the presence of citric acid by adding urea as a nitrogen precursor. Leveraging the synergistic effect of N-GQDs along with the tunable photoluminescent property at the interface of PSCs proved to be an efficient strategy for enhancing the light-harvesting capability and facilitating the charge transportation simultaneously, which leads to an overall improvement of the PSC performance. Moreover, the electron-rich pyridinic nitrogen within TP-N-GQDs acted as a Lewis base, coordinating with Pb2+ ions in perovskite and forming coordination bonds by sharing electron pairs, thereby decreasing the density of defects at the interface and the nonradiative recombination of the photogenerated carriers. Consequently, through the optimization of the nitrogen doping ratio of TP-N-GQDs, PSCs with areas of 0.09 and 1 cm(2) achieved maximum power conversion efficiencies (PCEs) of 21.98 and 17.12%, respectively. Additionally, TP-N-GQD passivation significantly enhanced the long-term stability of the device. The unencapsulated TP-N-GQD-modified device could sustain about 83% of its initial PCE afterward for 30 days of storage in air (25 +/- 5 degrees C, RH 25 +/- 5%).

Keyword :

charge transportation charge transportation interfacial modification interfacial modification nitrogen-dopedGQDs nitrogen-dopedGQDs reducing defectdensity reducing defectdensity tunable photoluminescent tunable photoluminescent

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Shen, Deli , Lan, Tongbin , Qiao, Dongxu et al. Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells [J]. | ACS APPLIED NANO MATERIALS , 2024 , 7 (2) : 2232-2243 .
MLA Shen, Deli et al. "Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells" . | ACS APPLIED NANO MATERIALS 7 . 2 (2024) : 2232-2243 .
APA Shen, Deli , Lan, Tongbin , Qiao, Dongxu , Guo, Minghuang , Zuo, Juan , Gu, Siyong et al. Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells . | ACS APPLIED NANO MATERIALS , 2024 , 7 (2) , 2232-2243 .
Export to NoteExpress RIS BibTex

Version :

Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells EI
期刊论文 | 2024 , 7 (2) , 2232-2243 | ACS Applied Nano Materials
Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells Scopus
期刊论文 | 2024 , 7 (2) , 2232-2243 | ACS Applied Nano Materials
Fine optimized cation immobilization strategy for enhancing stability and efficiency of perovskite solar cells SCIE
期刊论文 | 2024 , 487 | CHEMICAL ENGINEERING JOURNAL
WoS CC Cited Count: 14
Abstract&Keyword Cite Version(2)

Abstract :

The migration and volatilization of cations within organic-inorganic hybrid perovskite (OIPs) materials has been identified as a major issue for irreversibly degrading perovskite solar cells (PSCs), severely limiting their performance and impeding progress toward large-scale applications. To mitigate these problems, an adjustable cation immobilization strategy was proposed for the first time, in which a series of fluorobenzenesulfonamide (FBSA) molecules was introduced into perovskite precursor, a strong coordination bond was formed between the sulfonamide group with the octahedral imperfection caused by iodine vacancy, along with a hydrogen bond formed between the cation and F atom. As a result, the A-site cations were tightly immobilized in the octahedral of perovskite crystal lattice and the uncoordinated Pb2+ defects were effectively eliminated. Besides, the immobilization distance of cation was finely optimized by changing the substitution position of F atoms. Based on the cation-immobilized perovskite film, the efficiency of PSCs was significantly increased from 19.88 % to 22.30 %. Moreover, the unencapsulated PSCs exhibited impressive light and thermal stability, retaining 82 % of the initial efficiency after 720 h illumination at 1-sun, and maintaining nearly 80 % of the initial PCE after heating at 85 degrees C for 240 h. Thus, the present study offers a promising approach for advancing the commercialization of stable and high-efficiency perovskite solar cells.

Keyword :

Cation immobilization Cation immobilization Defects passivation Defects passivation Ion migration Ion migration Light stability Light stability Perovskite solar cells Perovskite solar cells

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhu, Jingwei , Xiu, Jieying , Zheng, Jianbin et al. Fine optimized cation immobilization strategy for enhancing stability and efficiency of perovskite solar cells [J]. | CHEMICAL ENGINEERING JOURNAL , 2024 , 487 .
MLA Zhu, Jingwei et al. "Fine optimized cation immobilization strategy for enhancing stability and efficiency of perovskite solar cells" . | CHEMICAL ENGINEERING JOURNAL 487 (2024) .
APA Zhu, Jingwei , Xiu, Jieying , Zheng, Jianbin , Li, Xiaoyang , Luo, Haiyan , Li, Yafeng et al. Fine optimized cation immobilization strategy for enhancing stability and efficiency of perovskite solar cells . | CHEMICAL ENGINEERING JOURNAL , 2024 , 487 .
Export to NoteExpress RIS BibTex

Version :

Fine optimized cation immobilization strategy for enhancing stability and efficiency of perovskite solar cells EI
期刊论文 | 2024 , 487 | Chemical Engineering Journal
Fine optimized cation immobilization strategy for enhancing stability and efficiency of perovskite solar cells Scopus
期刊论文 | 2024 , 487 | Chemical Engineering Journal
High-Branched Natural Polysaccharide Flaxseed Gum Binder for Silicon-Based Lithium-Ion Batteries with High Capacity SCIE
期刊论文 | 2024 , 20 (36) | SMALL
Abstract&Keyword Cite Version(2)

Abstract :

Silicon-based anodes heavily depend on the binder to preserve the unbroken electrode structure. In the present work, natural flaxseed gum (FG) is used as a binder of silicon nanoparticles (SiNPs) anode for the first time. Owing to a large number of polar groups and a rich branched structure, this material not only anchors tightly to the surface of SiNPs through bonding interactions but also formed a hydrogen bonding network structure among molecules. As a result, the FG binder can endow the silicon electrode with stable interfacial adhesion and outstanding mechanical properties. In addition, FG with a high viscosity facilitates the homogeneous dispersion of the electrode components. When FG is used as a binder, the cycling performance of the Si anode is greatly improved. After one hundred cycles at an applied current density of 1 A g-1, the electrode continues to display remarkable electrochemical properties with a significant cyclic capacity (2213 mA h g-1) and initial Coulombic efficiency (ICE) of 89.7%. FG is used as a silicon-based anode binder for lithium-ion batteries for the first time. As FG possesses abundant polar groups and branched chains, it enhances the mechanical properties of the silicon electrode and greatly improves the cycling stability of the silicon electrode. image

Keyword :

binder binder flaxseed gum flaxseed gum high-branched structure high-branched structure lithium-ion batteries lithium-ion batteries silicon-based anode silicon-based anode

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhou, Wenbo , Zhang, Renwei , Yu, Shijie et al. High-Branched Natural Polysaccharide Flaxseed Gum Binder for Silicon-Based Lithium-Ion Batteries with High Capacity [J]. | SMALL , 2024 , 20 (36) .
MLA Zhou, Wenbo et al. "High-Branched Natural Polysaccharide Flaxseed Gum Binder for Silicon-Based Lithium-Ion Batteries with High Capacity" . | SMALL 20 . 36 (2024) .
APA Zhou, Wenbo , Zhang, Renwei , Yu, Shijie , Peng, Zexuan , Zuo, Caixin , Yang, Wenjuan et al. High-Branched Natural Polysaccharide Flaxseed Gum Binder for Silicon-Based Lithium-Ion Batteries with High Capacity . | SMALL , 2024 , 20 (36) .
Export to NoteExpress RIS BibTex

Version :

High-Branched Natural Polysaccharide Flaxseed Gum Binder for Silicon-Based Lithium-Ion Batteries with High Capacity EI
期刊论文 | 2024 , 20 (36) | Small
High-Branched Natural Polysaccharide Flaxseed Gum Binder for Silicon-Based Lithium-Ion Batteries with High Capacity Scopus
期刊论文 | 2024 , 20 (36) | Small
Defect-engineered WSxSe2-x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range SCIE
期刊论文 | 2024 , 11 (7) , 2164-2177 | INORGANIC CHEMISTRY FRONTIERS
WoS CC Cited Count: 1
Abstract&Keyword Cite Version(1)

Abstract :

Sodium/potassium ion batteries (SIBs/PIBs) are attractive energy storage devices that offer greater sustainability and economic efficiency compared to their lithium-ion battery (LIB) counterparts. However, conventional electrode materials with satisfactory cycling stability and rate capacity are still lacking, due to intrinsic low electronic conductivity, sluggish intrinsic ion/electron kinetics and unsatisfactory structural stability. Herein, a well-designed two-step electrospinning/annealing strategy has been employed to fabricate defect-rich WSxSe2-x nanocrystals within selenized polyacrylonitrile fibers (designated as WSSe-Se@PAN). By tuning the Se-doping into the PAN fibers and forming defect-rich WSxSe2-x nanocrystals, the synergistic coupling of S-vacancy regulation can enhance the active sites, expand the interlayer spacing, and accelerate Na+/K+ diffusion kinetics, simultaneously. The WSSe-Se@PAN electrode, serving as the anode, delivers a superior sodium storage performance (467 mA h g(-1) at 2.0 A g(-1) after 700 cycles), and shows a reversible discharge capacity of 299 mA h g(-1) at 0.5 A g(-1) after 60 cycles with 99.8% capacity retention for the sodium ion full batteries. Encouragingly, it displays excellent feasibility in a wide working temperature range between -15 and 50 degrees C for SIBs. Furthermore, it exhibits high-rate capability and robust cycling life (139 mA h g(-1) at 1.0 A g(-1) after 1000 cycles) for PIBs. This work demonstrates that defect engineering of metal chalcogenides by anion doping is a feasible strategy to achieve high-performance anode materials for alkali metal ion batteries.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Xiao, Fuyu , Zhang, Jingran , Zhou, Weiming et al. Defect-engineered WSxSe2-x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range [J]. | INORGANIC CHEMISTRY FRONTIERS , 2024 , 11 (7) : 2164-2177 .
MLA Xiao, Fuyu et al. "Defect-engineered WSxSe2-x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range" . | INORGANIC CHEMISTRY FRONTIERS 11 . 7 (2024) : 2164-2177 .
APA Xiao, Fuyu , Zhang, Jingran , Zhou, Weiming , Fang, Yixing , He, Xiaotong , Lai, Wenbin et al. Defect-engineered WSxSe2-x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range . | INORGANIC CHEMISTRY FRONTIERS , 2024 , 11 (7) , 2164-2177 .
Export to NoteExpress RIS BibTex

Version :

Defect-engineered WSxSe2−x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range Scopus
期刊论文 | 2024 | Inorganic Chemistry Frontiers
One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells SCIE
期刊论文 | 2024 , 173 | MATERIALS RESEARCH BULLETIN
Abstract&Keyword Cite Version(2)

Abstract :

Perovskite solar cells (PSCs) fabricated of TiO2 electron transporting material (ETM) have aroused tremendous attention, but their power conversion efficiency (PCE) needs further improvements. In this study, for the first time, zirconium (Zr)-doped brookite TiO2 nanorods (ZTO) are synthesized by a facile route and subsequently employed as an ETM in PSCs which finally achieves a considerable PCE of 19.42 % by optimizing all operating conditions. Further characterizations have been undertaken to explore in detail the effects of Zr doping on the nature of the perovskite active layer and the photovoltaic performance. As a consequence, the enhanced PCE can be ascribed to the high quality perovskite crystals and a more favorable energy level alignment between the perovskite layer and ZTO mesoporous layer.

Keyword :

Electron transporting material Electron transporting material Perovskite solar cells Perovskite solar cells Photovoltaic performance Photovoltaic performance Zr-doped brookiteTiO2 Zr-doped brookiteTiO2

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Xie, Fengyan , Huang, Chunlei , Dong, Guofa et al. One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells [J]. | MATERIALS RESEARCH BULLETIN , 2024 , 173 .
MLA Xie, Fengyan et al. "One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells" . | MATERIALS RESEARCH BULLETIN 173 (2024) .
APA Xie, Fengyan , Huang, Chunlei , Dong, Guofa , Wu, Minghui , Wu, Kechen , Du, Shaowu et al. One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells . | MATERIALS RESEARCH BULLETIN , 2024 , 173 .
Export to NoteExpress RIS BibTex

Version :

One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells Scopus
期刊论文 | 2024 , 173 | Materials Research Bulletin
One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells EI
期刊论文 | 2024 , 173 | Materials Research Bulletin
Keggin-Type Polyoxometalate and Co Nanoparticles Codecorated Separator for High-Performance Lithium-Sulfur Battery SCIE
期刊论文 | 2024 , 24 (9) , 3746-3755 | CRYSTAL GROWTH & DESIGN
WoS CC Cited Count: 1
Abstract&Keyword Cite Version(2)

Abstract :

The Li-S battery has garnered widespread attention as an intriguing new energy storage equipment due to its remarkable energy density and low cost. Nevertheless, the infamous shuttle effect seriously hinders the commercialization process. In order to address this issue, this study rationally synthesizes the composites comprising Keggin-type polyoxometalate and Co nanoparticles, which are then coated on a pristine polypropylene separator. The modified separator can greatly inhibit lithium polysulfide shuttling, thereby leading to a greatly improved electrochemical performance. At the first cycle, the fabricated Li-S battery exhibits a specific discharge capacity of 1335.7 mA h g(-1), surpassing the 938.7 mA h g(-1) capacity of an unmodified separator. At a current density of 1C, the initial reversible discharge capacity reaches 988.2 mA h g(-1), and even after 500 cycles, it still retains a remaining capacity of 664.2 mA h g(-1), with a capacity decay rate of 0.066% per cycle. Even at a high sulfur loading of 4.2 mg cm(-2), the device displays a remarkable initial discharge capacity of 1158.2 mA h g(-1), with a remaining capacity of 952.7 mA h g(-1) after 70 cycles (0.1C). This significant performance enhancement could be ascribed to the synergistic effect of PMo12/Co-NCe, which exhibits greatly decreased electron transfer resistance and contact angle to the electrolyte, facilitating the rapid transport of Li-ion and kinetics. Meanwhile, the severe shuttle effect is alleviated effectively by combining the strong catalytic activity of PMo12 and Co nanoparticles with long-chain polysulfides.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Sun, Yuxuan , Wu, Chenchen , Xia, Yuxun et al. Keggin-Type Polyoxometalate and Co Nanoparticles Codecorated Separator for High-Performance Lithium-Sulfur Battery [J]. | CRYSTAL GROWTH & DESIGN , 2024 , 24 (9) : 3746-3755 .
MLA Sun, Yuxuan et al. "Keggin-Type Polyoxometalate and Co Nanoparticles Codecorated Separator for High-Performance Lithium-Sulfur Battery" . | CRYSTAL GROWTH & DESIGN 24 . 9 (2024) : 3746-3755 .
APA Sun, Yuxuan , Wu, Chenchen , Xia, Yuxun , Li, Yafeng , Wei, Mingdeng . Keggin-Type Polyoxometalate and Co Nanoparticles Codecorated Separator for High-Performance Lithium-Sulfur Battery . | CRYSTAL GROWTH & DESIGN , 2024 , 24 (9) , 3746-3755 .
Export to NoteExpress RIS BibTex

Version :

Keggin-Type Polyoxometalate and Co Nanoparticles Codecorated Separator for High-Performance Lithium-Sulfur Battery EI
期刊论文 | 2024 , 24 (9) , 3746-3755 | Crystal Growth and Design
Keggin-Type Polyoxometalate and Co Nanoparticles Codecorated Separator for High-Performance Lithium-Sulfur Battery Scopus
期刊论文 | 2024 , 24 (9) , 3746-3755 | Crystal Growth and Design
Heterojunction structure of cobalt sulfide cathodes for high-performance magnesium-ion batteries EI
期刊论文 | 2024 , 7 (5) , 1833-1847 | Matter
Abstract&Keyword Cite Version(2)

Abstract :

Transition metal chalcogenides (TMCs) with 3d orbitals have been intensively studied for use as cathodes in magnesium-ion batteries. However, their poor electronic conductivities and sluggish electrochemical kinetics severely restrict their electrochemical performance, preventing wide applicability for these materials. Here, we propose a heterointerface structure of cobalt sulfide (Co3S4/CoS2) hollow nanospheres to enable built-in electric fields generated in heterointerfaces, as verified in density functional theory, finite-element simulations, and ab initio molecular dynamics results. Compared to other TMCs, our cathode exhibited a substantial capacity of 597 mAh g−1 after 120 cycles at 50 mA g−1. When evaluated in a pouch cell, the electrode can sustain 100 deep cycles at 40 mA g−1 with an energy density of 203 Wh kg−1 that displays potential for practical applications. Finally, rational heterostructure engineering of transition-metal-based sulfides provides insights into developing cathodes for high-performance sustainable Mg batteries. © 2024 Elsevier Inc.

Keyword :

Cathodes Cathodes Cobalt compounds Cobalt compounds Density functional theory Density functional theory Electric fields Electric fields Heterojunctions Heterojunctions Inorganic compounds Inorganic compounds Magnesium Magnesium Metal ions Metal ions Molecular dynamics Molecular dynamics Sulfur compounds Sulfur compounds Transition metals Transition metals

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Jianbiao , Ghosh, Tanmay , Ju, Zhengyu et al. Heterojunction structure of cobalt sulfide cathodes for high-performance magnesium-ion batteries [J]. | Matter , 2024 , 7 (5) : 1833-1847 .
MLA Wang, Jianbiao et al. "Heterojunction structure of cobalt sulfide cathodes for high-performance magnesium-ion batteries" . | Matter 7 . 5 (2024) : 1833-1847 .
APA Wang, Jianbiao , Ghosh, Tanmay , Ju, Zhengyu , Ng, Man-Fai , Wu, Gang , Yang, Gaoliang et al. Heterojunction structure of cobalt sulfide cathodes for high-performance magnesium-ion batteries . | Matter , 2024 , 7 (5) , 1833-1847 .
Export to NoteExpress RIS BibTex
Achieving high kinetics anode materials for all-solid-state lithium-ion batteries Scopus
期刊论文 | 2024 , 100 | Journal of Energy Storage
Abstract&Keyword Cite Version(2)

Abstract :

Transition metal dichalcogenides (TMDs) have enormous commercial potential as anode materials for all-solid-state lithium-ion batteries (ASSLIBs). Herein, the copper sulfides (CuS) with a hierarchical nanosphere structure are designed through a facile one-step solvothermal synthetic route. When employed as an anode for ASSLIBs, the CuS hierarchical nanospheres (hn-CuS) exhibited a high capacity of 350 mA h g−1 after 50 cycles at a current density of 250 mA g−1 and an outstanding rate capability. The unique three-dimensional (3D) structure of hn-CuS plays an important role in alleviating the volume expansion, thus obtaining excellent electrochemical properties. Moreover, ex-situ X-ray diffraction was used to investigate the possible kinetics and reaction mechanism of the hn-CuS anode. This work inspired a new promise for preparing the other TMDs as anode materials for ASSLIBs with high performance. © 2024 Elsevier Ltd

Keyword :

All-solid-state All-solid-state Copper sulfide Copper sulfide Electrochemical property Electrochemical property Lithium-ion battery Lithium-ion battery Nanospheres Nanospheres

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zheng, Y. , Liu, S. , Zheng, J. et al. Achieving high kinetics anode materials for all-solid-state lithium-ion batteries [J]. | Journal of Energy Storage , 2024 , 100 .
MLA Zheng, Y. et al. "Achieving high kinetics anode materials for all-solid-state lithium-ion batteries" . | Journal of Energy Storage 100 (2024) .
APA Zheng, Y. , Liu, S. , Zheng, J. , Kang, G. , Li, Y. , SimanYang et al. Achieving high kinetics anode materials for all-solid-state lithium-ion batteries . | Journal of Energy Storage , 2024 , 100 .
Export to NoteExpress RIS BibTex

Version :

Achieving high kinetics anode materials for all-solid-state lithium-ion batteries SCIE
期刊论文 | 2024 , 100 | JOURNAL OF ENERGY STORAGE
Achieving high kinetics anode materials for all-solid-state lithium-ion batteries EI
期刊论文 | 2024 , 100 | Journal of Energy Storage
10| 20| 50 per page
< Page ,Total 49 >

Export

Results:

Selected

to

Format:
Online/Total:182/8815538
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1