Indexed by:
Abstract:
Two new organometallic copolymers (PVFVM1 and PVFVM1-1) bearing different molar ratios of ferrocene and triphenylamine pendants were successfully designed and synthesized as cathode active materials for organic-battery applications. Their structural and thermal characteristics were determined by H-1 NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). Cyclic voltammograms of the as-prepared polymers show that the electrochemical reactions of the ferrocene and triphenylamine moieties are reversible after the first cycle. A composite electrode based on copolymer PVFVM1 exhibits an initial specific discharge capacity of 102 mAhg(-1), which corresponds to 98% of its theoretical capacity (104 mAhg(-1)). The cycle endurances for both polymers have been evaluated for over 50 cycles. Our results show that both copolymers are good candidates as a new class of cathode active materials and charge-storage materials for rechargeable batteries.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
ISSN: 1434-1948
Year: 2016
Issue: 7
Page: 1030-1035
2 . 4 4 4
JCR@2016
2 . 2 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:235
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 32
SCOPUS Cited Count: 33
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: