Indexed by:
Abstract:
Compared to the classical Black-Scholes model for pricing options, the Finite Moment Log Stable (FMLS) model can more accurately capture the dynamics of the stock prices including large movements or jumps over small time steps. In this paper, the FMLS model is written as a fractional partial differential equation and we will present a new numerical scheme for solving this model. We construct an implicit numerical scheme with second order accuracy for the FMLS and consider the stability and convergence of the scheme. In order to reduce the storage space and computational cost, we use a fast bi-conjugate gradient stabilized method (FBi-CGSTAB) to solve the discrete scheme. A numerical example is presented to show the efficiency of the numerical method and to demonstrate the order of convergence of the implicit numerical scheme. Finally, as an application, we use the above numerical technique to price a European call option. Furthermore, by comparing the FMLS model with the classical B-S model, the characteristics of the FMLS model are also analyzed.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NUMERICAL ALGORITHMS
ISSN: 1017-1398
Year: 2017
Issue: 3
Volume: 75
Page: 569-585
1 . 5 3 6
JCR@2017
1 . 7 0 0
JCR@2023
ESI Discipline: MATHEMATICS;
ESI HC Threshold:71
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: