Indexed by:
Abstract:
When the fluctuation of option price is regarded as a fractal transmission system and the stock price follows a Levy distribution, a time-space fractional option pricing model (TSFOPM) is obtained. Then we discuss the numerical simulation of the TSFOPM. A discrete implicit numerical scheme with a second-order accuracy in space and a 2 - gamma order accuracy in time is constructed, where gamma is a transmission exponent. The stability and convergence of the obtained numerical scheme are analyzed. Moreover, a fast bi-conjugate gradient stabilized method is proposed to solve the numerical scheme in order to reduce the storage space and computational cost. Then a numerical example with exact solution is presented to demonstrate the accuracy and effectiveness of the proposed numerical method. Finally, the TSFOPM and the above numerical technique are applied to price European call option. The characteristics of the fractional option pricing model are analyzed in comparison with the classical Black-Scholes (B-S) model. (C) 2018 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED MATHEMATICS AND COMPUTATION
ISSN: 0096-3003
Year: 2018
Volume: 339
Page: 186-198
3 . 0 9 2
JCR@2018
3 . 5 0 0
JCR@2023
ESI Discipline: MATHEMATICS;
ESI HC Threshold:68
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: