Indexed by:
Abstract:
Inspired by efficient perovskite solar cells, we developed a three component hybrid perovskite-based solar photocatalyst cell, NiOx/FAPbBr(3)/TiO2, for C(sp(3))-H bond activation with high selectivity (similar to 90%) and high conversion rates (3800 mu mol g(-1) h(-1)) under ambient conditions. Time-resolved spectroscopy on our photocatalytic cell reveals efficient exciton dissociation and charge separation, where TiO2 and NiOx serve as the electron- and hole-transporting layers, respectively. The photogenerated charge carriers injected into TiO2 and NiOx drive the challenging C-H activation reaction via the synergetic effects of their band alignment relative to FAPbBr(3). The reaction pathway is investigated by controlling the free-radical formation, and we find that C-H activation is mainly triggered by hole oxidation. Besides aromatic alkanes, also the C(sp(3))-H bond in cycloalkanes can be oxidized selectively. This work demonstrates a generic strategy for engineering high-performance photocatalysts based on the perovskite solar cell concept.
Keyword:
Reprint 's Address:
Version:
Source :
ACS ENERGY LETTERS
ISSN: 2380-8195
Year: 2019
Issue: 1
Volume: 4
Page: 203-,
1 9 . 0 0 3
JCR@2019
1 9 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:236
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 118
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: