Indexed by:
Abstract:
Carbon nitride, regarded as a promising, environmentally friendly and sustainable photocatalyst for solar hydrogen generation, has shown a gradual improvement of photocatalytic activity with an apparent quantum yield up to 60%. However, it is still challenging to achieve flexible, efficient and scalable carbon nitride solar hydrogen evolution devices, limiting its practical application. Herein we report a visible-light-driven double-side hydrogen evolution nanopaper that is highly porous, crystalline and chemically stable. The nanopaper was fabricated via vacuum filtration of electrostatically self-assembled carbon nitride and nanocellulose. This nanopaper shows excellent mechanical properties with tensile strength of 18.5 MPa and Young's modulus of 414 MPa, a high hydrogen evolution rate of 3.9 mmol g(-1) h(-1) (corresponding to 6.5 mu mol cm(-2) h(-1)), and remarkable photostability over 32-h photocatalytic tests.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2020
Volume: 260
1 9 . 5 0 3
JCR@2020
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 23
SCOPUS Cited Count: 23
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: