Indexed by:
Abstract:
Carbon nitride, regarded as a promising, environmentally friendly and sustainable photocatalyst for solar hydrogen generation, has shown a gradual improvement of photocatalytic activity with an apparent quantum yield up to 60%. However, it is still challenging to achieve flexible, efficient and scalable carbon nitride solar hydrogen evolution devices, limiting its practical application. Herein we report a visible-light-driven double-side hydrogen evolution nanopaper that is highly porous, crystalline and chemically stable. The nanopaper was fabricated via vacuum filtration of electrostatically self-assembled carbon nitride and nanocellulose. This nanopaper shows excellent mechanical properties with tensile strength of 18.5 MPa and Young's modulus of 414 MPa, a high hydrogen evolution rate of 3.9 mmol g−1 h−1 (corresponding to 6.5 μmol cm−2 h−1), and remarkable photostability over 32-h photocatalytic tests. © 2019 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Applied Catalysis B: Environmental
ISSN: 0926-3373
Year: 2020
Volume: 260
1 9 . 5 0 3
JCR@2020
2 0 . 3 0 0
JCR@2023
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:1
Affiliated Colleges: