Indexed by:
Abstract:
Pyridinic-N configurations and intrinsic defects on nanocarbons have been regarded as potentially active-sites for the oxygen reduction reaction (ORR). In this work, a facile strategy is demonstrated to achieve pyridinic-N dominated porous carbon nanosheets with edge-enriched defective nature through the selection of the bio-precursor guanine as C/N sources. It is able to achieve high contents of pyridinicN dominated (48.1% from gross N) species and the few-layers carbon architectures with hierarchical porosity by a template-free carbonization method. These 2D carbon structures are of low cost, scalable and economically attractive while based on renewable and highly abundant resources. As a result, the optimized catalyst delivers a significantly enhanced electrocatalytic performance for ORR under wide range of pH from alkaline to acid, i. e. possessing a 30 mV more positive half-wave potential (0.885 V) than Pt/C (0.855 V) catalyst in 0.1M KOH, and very close activities to Pt/C in 0.1M PBS and 0.1M HClO4 solution. This ORR performance is attributed to the synergistic effects of unique graphene-like architecture, high porosity, and coexistences of high contents of pyridinic- N species and abundant edge/defect sites. (C) 2019 Elsevier Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CARBON
ISSN: 0008-6223
Year: 2020
Volume: 156
Page: 179-186
9 . 5 9 4
JCR@2020
1 0 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 48
SCOPUS Cited Count: 46
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: