Indexed by:
Abstract:
During the disposal of highly saline wastewaters, i.e., landfill leachate concentrate, a conceptual and paradigmatic transformation from contaminant elimination to sustainable resource extraction urges for novel selective membranes. Mussel-inspired modification through dopamine self-polymerization can be a competitive alternative to tailor the membrane surface properties for enhanced permselectivity to target compounds. Herein, co-deposition of polydopamine-polyethylenimine (PEI) complex onto loose nanofiltration (NF) membranes was conducted using persulfate as trigger, which resulted in a significant alteration in membrane surface properties. Particularly, the pore size of bioinspired NF membranes decreased, along with a reduction in molecular weight cut-off (MWCO) from 640 to 298 Da after 120-min bio-inspired coating, which yielded an enhancement in rejection of humic substances from 95.1% to 98.9% in filtration of landfill leachate concentrate. Furthermore, the charge of membrane surface was tailored to be more positive due to incorporation of positively-charged PEI, which markedly undermined the electrostatic repulsion force for enhanced salt permeation. These bio-inspired NF membranes showed a superior selectivity between humic substances and salts for their potential fractionation from the landfill leachate concentrate. Through an integrated NFbased diafiltration procedure, the concentration of humic substances was remarkably enriched from 1779.4 to 17247.1 mg.L-1 with 96.0% recovery. Additionally, 99.5% desalination efficiency was achieved, resulting in a high purity (i.e., 98.3%) for humic substances as potential organic fertilizer application. These findings suggest that the bioinspired co-deposition is an effective strategy to tailor the surface properties of NF membranes for efficient fractionation of humic substances and salts, in view of sustainable resource recovery from the landfill leachate concentrate.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2020
Volume: 388
1 3 . 2 7 3
JCR@2020
1 3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 26
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: