Indexed by:
Abstract:
CdS quantum dots (QDs) are excellent visible-light-driven photocatalysts due to their unique small size (<10 nm), suitable band energy structure, and short charge transportation length. Unfortunately, the easy aggregation of CdS QDs to form larger particles results in a higher recombination rate for photoinduced electron-hole pairs, which deteriorates the photocatalytic activity. Here, we report in situ growth of CdS QDs with high dispersion and stability on covalent triazine-based frameworks (CTFs) via a facile photoreduction method. The photocatalytic H-2 evolution activity of CdS QD-loaded CTFs is effectively enhanced to approximately 55 and 4 times than that of pristine CTFs and bulk CdS, respectively. This enhanced photocatalytic performance is mainly ascribed to the higher separation rate of photogenerated carriers resulting from synergistic QD-on-sheet interactions between CdS QDs and CTFs. This work develops an efficient one-pot strategy to prepare metal-sulfide QDs with high dispersion and underlines the potential of utilizing CTFs as a suitable platform to develop efficient photocatalytic systems. (c) 2020 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN: 0925-8388
Year: 2020
Volume: 833
5 . 3 1 6
JCR@2020
5 . 8 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:196
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 33
SCOPUS Cited Count: 24
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0