Query:
学者姓名:赖跃坤
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
Supercritical carbon dioxide (sCO2) corrosion remains a significant and ongoing impediment within the domain of carbon capture, utilization, and storage (CCUS) technologies, necessitating the advancement of robust mitigation tactics. Based on experimental and theoretical investigations, we have studied the inhibition performance of a composite formulation on X80 steel. The in-situ electrochemical studies have confirmed the superior performance of this composite inhibitor, achieving an inhibition efficiency exceeding 99.79%. Through atomistic simulations, we gain mechanistic insights at the molecular level, revealing how the dissociated heteroaromatic species of the composite inhibitor effectively chelate to the metal surface through unsaturated oxygen-carbon pairings, thereby enhancing surface coverage. Such findings provide a prototypical structure- activity relationship to inform the application of optimized corrosion inhibitor formulations in the challenging setting of sCO2 environments.
Keyword :
AIMD AIMD Composite inhibitor Composite inhibitor Inhibition strategy Inhibition strategy Supercritical CO2 Supercritical CO2
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Ruidong , Li, Jianna , Zhu, Jianbo et al. A highly effective, economical and environmentally friendly composite corrosion inhibitor strategy for dynamic supercritical CO2 aqueous environments [J]. | CORROSION SCIENCE , 2025 , 248 . |
MLA | Li, Ruidong et al. "A highly effective, economical and environmentally friendly composite corrosion inhibitor strategy for dynamic supercritical CO2 aqueous environments" . | CORROSION SCIENCE 248 (2025) . |
APA | Li, Ruidong , Li, Jianna , Zhu, Jianbo , Gao, Zehui , Liu, Chongjun , Wang, Yueshe et al. A highly effective, economical and environmentally friendly composite corrosion inhibitor strategy for dynamic supercritical CO2 aqueous environments . | CORROSION SCIENCE , 2025 , 248 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
In recent years, the demand for transparent substrates (e.g. windows, mirrors and photovoltaic glass) with anti- fogging performances has increased, while conventional anti-fogging coatings, like single-component organic coatings (PVA, PAA, PAAm), show poor stability and cannot maintain their performance stably under harsh environments. In this work, KH570@TiO2 plays the role of a bottom layer (KT coating) to increase roughness and binding, where the hydrolysis of KH570 anchors the substrate and provides active sites for the binding of the top coating, and the addition of the TiO2 enhances UV shielding properties. A composite PVA-AAm-POSS-NH2 gel (PAP coating) served as the top layer, which contains a large number of hydrophilic groups and thus endow the composite coating with satisfactory anti-fogging performance. The strong bonding force provided by the KT coating and the tight physical entanglement of the PAP coating endow the double-layer coating (PAPKT coating) stable anti-fogging performance (60 times of tape peeling test, 100 times of sandpaper friction test, and sand- punching test), and 48 s icing delay performance. The multi-performances make this work great potential in automotive glass as well as building facades to cope with complex situations.
Keyword :
Active sites Active sites Anti-fogging Anti-fogging High stability High stability High transparency High transparency Membrane Membrane
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Cheng, Yan , Feng, Feng , Zhu, Tianxue et al. Robust multifunctional PVA-PAAm hydrogel-based anti-fogging membrane via the construction of active sites [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 504 . |
MLA | Cheng, Yan et al. "Robust multifunctional PVA-PAAm hydrogel-based anti-fogging membrane via the construction of active sites" . | CHEMICAL ENGINEERING JOURNAL 504 (2025) . |
APA | Cheng, Yan , Feng, Feng , Zhu, Tianxue , Zheng, Yanhui , Gou, Yukui , Yang, Dapeng et al. Robust multifunctional PVA-PAAm hydrogel-based anti-fogging membrane via the construction of active sites . | CHEMICAL ENGINEERING JOURNAL , 2025 , 504 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Thermochromic smart windows offer energy-saving potential through temperature-responsive optical transmittance adjustments, yet face challenges in achieving anti-UV radiation, fast response, and high-temperature stability characteristics for long-term use. Herein, the rational design of Hofmeister effect-enhanced, nanoparticle-shielded composite hydrogels, composed of hydroxypropylmethylcellulose (HPMC), poly(N,N-dimethylacrylamide) (PDMAA), sodium sulfate, and polydopamine nanoparticles, for anti-UV, fast-response, and all-day-modulated smart windows is reported. Specifically, a three-dimensional network of PDMAA is created as the supporting skeleton, markedly enhancing the thermal stability of pristine HPMC hydrogels. Sodium sulfate induces a Hofmeister effect, lowering the lower critical solution temperature to 32 degrees C while accelerating phase transition rates fivefold (30 s vs. 150 s). Intriguingly, small-sized polydopamine nanoparticles simultaneously enable high luminous transmittance of 66.9% and outstanding anti-UV capability. Additionally, the smart window showcases a high solar modulation (51.2%) and maintains a 10.2 degrees C temperature reduction versus a glass window during all-day modulation applications. The design strategy is effective, opening up new avenues for manufacturing fast-response and durable thermochromic smart windows for energy savings and emission reduction.
Keyword :
anti-UV anti-UV hydroxypropylmethylcellulose hydroxypropylmethylcellulose phase change rate phase change rate smart window smart window thermal stability thermal stability thermochromism thermochromism
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Kai , Liu, Shuzhi , Yu, Jiahui et al. Hofmeister Effect-Enhanced, Nanoparticle-Shielded, Thermally Stable Hydrogels for Anti-UV, Fast-Response, and All-Day-Modulated Smart Windows [J]. | ADVANCED MATERIALS , 2025 , 37 (14) . |
MLA | Wang, Kai et al. "Hofmeister Effect-Enhanced, Nanoparticle-Shielded, Thermally Stable Hydrogels for Anti-UV, Fast-Response, and All-Day-Modulated Smart Windows" . | ADVANCED MATERIALS 37 . 14 (2025) . |
APA | Wang, Kai , Liu, Shuzhi , Yu, Jiahui , Hong, Peixin , Wang, Wenyi , Cai, Weilong et al. Hofmeister Effect-Enhanced, Nanoparticle-Shielded, Thermally Stable Hydrogels for Anti-UV, Fast-Response, and All-Day-Modulated Smart Windows . | ADVANCED MATERIALS , 2025 , 37 (14) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The development of harnessing energy from surrounding humidity has been impeded by obstacles such as ambiguous ion migration mechanism and the restricted electrical output of devices designed to generate power from moisture. Herein, a novel hygroscopic network is presented that enhances ion migration by employing a random copolymerization of acrylamide (AAm) and 2-acrylamide-2-methylpropanesulfonic acid (AMPS). This method strategically positions sulfonic acid groups within hydrogels, which can release protons, in the presence of LiCl. Both experimental data and molecular dynamic simulations indicate that ion migration primarily occurs through a proton hopping mechanism, protons are released from the & horbar;SO3H and interact with adjacent confined water molecules, creating a network that facilitates swift proton migration along hydrogen-bonded chains. The developed single sulfonic acid side chain@hydrogel-based moisture-electric generator (SHMEG) exhibits a sustained open-circuit voltage (Voc) of 0.89 V and a current density of 173 mu A cm-2 for over 1400 h. Additionally, the SHMEG's scalability allows it to be connected in series or parallel, which provides adaptability and lightness. These features render the SHMEG suitable for powering a variety of commercial devices, such as mobile phone, health monitoring sensors and nighttime illumination, making it a promising, high power, and environmentally friendly energy solution.
Keyword :
hydrogels hydrogels ionic hopping ionic hopping moisture-electric generation moisture-electric generation proton migration proton migration wearable electronics wearable electronics
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Cheng, Yan , Zhu, Tianxue , He, Qinhong et al. Hydrogel-Based Moisture Electric Generator with High Output Performance Induced by Proton Hopping [J]. | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
MLA | Cheng, Yan et al. "Hydrogel-Based Moisture Electric Generator with High Output Performance Induced by Proton Hopping" . | ADVANCED FUNCTIONAL MATERIALS (2025) . |
APA | Cheng, Yan , Zhu, Tianxue , He, Qinhong , Wen, Feng , Cheng, Yun , Huang, Jianying et al. Hydrogel-Based Moisture Electric Generator with High Output Performance Induced by Proton Hopping . | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The growing complexity of dyeing and printing effluents has presented considerable challenges for their effective treatment and recycling. Recently, there has been a notable increase in the development of loose nanofiltration (NF) membranes, which are characterised by their exceptional environmental resilience, high throughput, and superior dye/salt selectivity. This work presents the development of a new loose NF membrane prepared from a modified polymer called poly(ether sulfone ether ketone ketone) (PESEKK). The membrane features a dense- loose-support structure and is prepared through a straightforward one-step, non-solvent induced phase separation (NIPS) technique, eliminating the need for heating or post-treatment. Precise regulation of membrane pore size down to 4.27 nm can be achieved through modulation of PESEKK and pore-former composition. The membranes could separate positively and negatively charged dyes in mixed dye solutions accurately and selectively. Additionally, the membrane demonstrated exceptional dye/salt selective separation with a high water flux of 230.7 L m- 2 h- 1 bar- 1 , Congo red rejection of 99.91 +/- 0.13 %, NaCl rejection of 2.71 +/- 0.23 %, and a separation factor (alpha) of 347.4, outperforming state-of-the-art membranes. Remarkably, PESEKK membrane maintained outstanding stability and separation performance for up to 200 h under extreme environments, including NaOH solution (up to 9 mol L-1), NaClO solution (up to 40,000 mg L-1 h), n-hexane, isopropanol, and methanol. This high-performing loose NF membrane, developed using innovative polymer materials, offers a promising solution for treating the challenging wastewater generated by printing and dyeing processes.
Keyword :
Dense-loose-supporting structure Dense-loose-supporting structure Dye/salt separation Dye/salt separation Loose nanofiltration Loose nanofiltration Non-solvent induced phase separation Non-solvent induced phase separation Poly(ether sulfone ether ketone ketone) Poly(ether sulfone ether ketone ketone)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Hongxiang , Lai, Xing , You, Jian et al. Facile construction of novel poly(ether sulfone ether ketone ketone) loose nanofiltration membrane for efficient dye/salt separation [J]. | DESALINATION , 2025 , 601 . |
MLA | Zhang, Hongxiang et al. "Facile construction of novel poly(ether sulfone ether ketone ketone) loose nanofiltration membrane for efficient dye/salt separation" . | DESALINATION 601 (2025) . |
APA | Zhang, Hongxiang , Lai, Xing , You, Jian , Wang, Wei , Wu, Meihua , Liu, Longmin et al. Facile construction of novel poly(ether sulfone ether ketone ketone) loose nanofiltration membrane for efficient dye/salt separation . | DESALINATION , 2025 , 601 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
ZIF-8 is considered as a promising functional material in anti-corrosion coating applications. However, ZIF-8 hydrolyzes easily, especially in acidic and salty media, due to its unstable Zn-N coordination bonding and hydrophilic crystal surface, which reduces anti-corrosion durability of the coatings. In this study, highly hydrophobic modification of ZIF-8 particles was performed through simple surface ligand exchange with 5,6dimethylbenzimidazole (DMBIM). The as-prepared ZIF-8/DMBIM particles showed high water-repellency and enhanced chemical stability in acidic, neutral, and alkaline media, and excellent compatibility and barrier function in epoxy coatings. As a consequence, ZIF-8/DMBIM modified epoxy coatings showed significantly enhanced corrosion resistances in acid, alkali and salt aqueous solutions with pH 3.0-11.0. Electrochemical impedance spectroscopy tests demonstrated that, after 20 days of immersion in 3.5 wt% NaCl solution at all the studied pH, the |Z|0.01 Hz values of ZIF-8/DMBIM modified epoxy coatings were approximately two orders of magnitude higher than of the original epoxy coatings. This work provides an idea for the development and application of ZIF materials in more fields, and innovative anti-corrosion coatings based on functional modification of materials.
Keyword :
Corrosion resistance Corrosion resistance Epoxy coatings Epoxy coatings Hydrophobic modification Hydrophobic modification Surface ligand exchange Surface ligand exchange ZIF-8 ZIF-8
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, Huaiyin , Wang, Zhonghe , Li, Jun et al. Facile preparation of highly hydrophobic ZIF-8/DMBIM modified epoxy coatings with enhanced acid, alkali and marine corrosion resistance [J]. | MATERIALS TODAY CHEMISTRY , 2025 , 43 . |
MLA | Chen, Huaiyin et al. "Facile preparation of highly hydrophobic ZIF-8/DMBIM modified epoxy coatings with enhanced acid, alkali and marine corrosion resistance" . | MATERIALS TODAY CHEMISTRY 43 (2025) . |
APA | Chen, Huaiyin , Wang, Zhonghe , Li, Jun , Liu, Xiaolin , Li, Congxiang , Li, Yongzhao et al. Facile preparation of highly hydrophobic ZIF-8/DMBIM modified epoxy coatings with enhanced acid, alkali and marine corrosion resistance . | MATERIALS TODAY CHEMISTRY , 2025 , 43 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Wearable electronic textiles, capable of detecting human motions and recognizing gestures, represent the forefront of personalized electronics. However, the integration of high stretchability, sensitivity, durability, and self-healable/self-bondable capabilities into one platform remains challenging. Herein, mussel-inspired stretchable, sensitive, and self-healable/self-bonded conductive yarns enabled by dual electron transfer pathways and dual encapsulation technology are presented. Specifically, covered spandex yarns provide the necessary stretchability and adsorption capacity, while supramolecular polydopamine layer affords enhanced interfacial interactions. Reduced graphene oxide nanosheets and silver nanoparticle-based sensing layers offer dual electron transfer pathways. Dual encapsulations with self-healable/self-bondable ability not only mitigate the crack propagation but also protect inner conductive materials from detachment. Benefiting from these rational designs, the composite yarns exhibit a large sensing range (158% strain), high sensitivity (22.88), low detection limit (0.0345%), fast response/recovery times (105/150 ms), and remarkable robustness (enduring 10 000 cycles at 20% strain). Furthermore, pressure sensors and sensing arrays are assembled by stacking conductive yarns perpendicularly using a self-bondable function, and self-healable helical-structured conductors are fabricated through the shape-memory effect. Important applications of multifunctional yarns in physiological motion detection, gesture recognition, and circuit connection are demonstrated. This concept creates opportunities for the construction of multifunctional and high-performance wearable electronic textiles.
Keyword :
dual conductive pathways dual conductive pathways helical-structured conductor helical-structured conductor self-healable ability self-healable ability sensing performance sensing performance wearable electronics wearable electronics
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhao, Songfang , Zhang, Yongjing , Li, Guolin et al. Mussel-Inspired Highly Sensitive, Stretchable, and Self-Healable Yarns Enabled by Dual Conductive Pathways and Encapsulation for Wearable Electronics [J]. | ADVANCED FUNCTIONAL MATERIALS , 2025 , 35 (7) . |
MLA | Zhao, Songfang et al. "Mussel-Inspired Highly Sensitive, Stretchable, and Self-Healable Yarns Enabled by Dual Conductive Pathways and Encapsulation for Wearable Electronics" . | ADVANCED FUNCTIONAL MATERIALS 35 . 7 (2025) . |
APA | Zhao, Songfang , Zhang, Yongjing , Li, Guolin , Zhou, Yunlong , Xia, Meili , Hoang, Anh Tuan et al. Mussel-Inspired Highly Sensitive, Stretchable, and Self-Healable Yarns Enabled by Dual Conductive Pathways and Encapsulation for Wearable Electronics . | ADVANCED FUNCTIONAL MATERIALS , 2025 , 35 (7) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The low light absorption capacity, fast recombination of photogenerated carriers and slow H+ reduction kinetics of carbon nitride severely limit its application in photocatalytic research. What's more, the challenge remains to efficiently utilise photogenerated electrons. In this work, sulfur (S) self-doped carbon nitride (SCN) was formed by thermal polymerisation, and the introduction of S stimulated the electron delocalisation of the active site and optimised the absorption of visible light by the carbon nitride. The introduction of defects and cyano (-C N) groups optimises the surface atomic and electronic structure of SCN, enhances photogenerated electron trapping and greatly suppresses charge recombination. The n-pi* electron jump of the lone pair of electrons at the defect site gives rise to a new absorption band that broadens the response to visible light. The H-2 evolution rate of SCNV under visible light reached 3437 mu mol g(-1) h(-1), which was about 3.0 times higher than that of SCN (1148 mu mol g(-1) h(-1)). Density Functional Theory (DFT) calculations further show that the introduction of defects and -C N lowers the energy barrier of *H, enhances carrier separation, and forms an electron-rich structure, which effectively promotes the utilisation of photogenerated electrons and photocatalytic H2 evolution efficiency.
Keyword :
Carbon nitride Carbon nitride -C N -C N Effective charge separation Effective charge separation Nitrogen defects Nitrogen defects Photocatalytic H-2 evolution Photocatalytic H-2 evolution
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Quan, Yongkang , Li, Jianna , Li, Xingzhou et al. Molten salt-assisted synthesis of carbon nitride with defective sites as visible-light photocatalyst for highly efficient hydrogen evolution [J]. | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY , 2025 , 362 . |
MLA | Quan, Yongkang et al. "Molten salt-assisted synthesis of carbon nitride with defective sites as visible-light photocatalyst for highly efficient hydrogen evolution" . | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY 362 (2025) . |
APA | Quan, Yongkang , Li, Jianna , Li, Xingzhou , Chen, Rongxing , Zhang, Yingzhen , Huang, Jianying et al. Molten salt-assisted synthesis of carbon nitride with defective sites as visible-light photocatalyst for highly efficient hydrogen evolution . | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY , 2025 , 362 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
With the increasing demand in fields such as wearable sensors, soft robotics, tissue engineering, and wound dressings, the development of hydrogels with strong adhesion in wet environments has become a critical focus of research. However, most existing adhesive materials lack the ability to transition rapidly and reversibly between the adhesive and nonadhesive states, and their adhesion is often limited to a single wet environment. In this study, a smart interfacial adhesive hydrogel with tunable adhesion properties across diverse liquid environments is presented. By tailoring interchain interactions and leveraging electrostatically induced traction between hydrophilic and hydrophobic chain segments, the hydrogel achieves reversible adhesion modulation in response to temperature changes while maintaining strong wet adhesion. Notably, its adhesive strength at elevated temperatures (45 degrees C) is approximately three times greater than at lower temperatures (5 degrees C). The adhesive hydrogel exhibits an adhesive strength of 227 kPa in aqueous environments and 213 kPa in oil-containing environments. This innovative design strategy enables the hydrogel to exhibit broad switchable, and dynamic wet adhesion capabilities, unlocking significant potential for a wide range of applications.
Keyword :
controlled adhesion controlled adhesion electrostatic induction electrostatic induction hydrogen bonding hydrogen bonding temperature response temperature response wet adhesive wet adhesive
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wu, Che , Cheng, Yan , Wang, Kai et al. Temperature-Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions [J]. | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
MLA | Wu, Che et al. "Temperature-Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions" . | ADVANCED FUNCTIONAL MATERIALS (2025) . |
APA | Wu, Che , Cheng, Yan , Wang, Kai , Ni, Yimeng , Wang, Wenyi , Wu, Ruizi et al. Temperature-Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions . | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Inspired by plants and animals in nature, durable superhydrophobic surfaces have been successfully developed in the past decades. However, the practical application of these superhydrophobic surfaces suffers from poor mechanical and chemical stability after damage or longtime usage. Thus, effective silicone-based polymers are developed to prepare the intelligent self-healing and durable superhydrophobic coatings with multifunctions. The superhydrophobic coatings are composed of dynamic silicone polymers and silica nanoparticles, which can be applicable in various substrates with enhanced water repellency. The abundant hydrogen bonds and reversible B-O covalent bonds in the dynamic silicone polymers enable a strong binding force with the substrate and self-healing nature. Thus, the superhydrophobic coatings exhibit a high contact angle up to 159.3 degrees, and a low sliding angle of 6.9 degrees. Meanwhile, it displays mechanical stability against washing and abrasion damage, and chemical stability in acid and alkaline environment. Especially, it is capable of repairing the superhydrophobicity after damage due to the reversible association/dissociation of dynamic B-O covalent bonds in silicone polymers. In addition, the superhydrophobic cotton fabric shows excellent anti-fouling, self-cleaning, antibacterial property, and can be applied in oil-water separation with high efficiency. This robust and versatile superhydrophobic coatings without containing perfluoro-compounds are promising in commercial textile fishing treatment with low cost.
Keyword :
Dynamic covalent bonds Dynamic covalent bonds Oil-water separation Oil-water separation Self-healing property Self-healing property Silicone-based polymers Silicone-based polymers Superhydrophobicity Superhydrophobicity
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Gu, Jing , Zhao, Limin , Ala, Uddin Md et al. Dynamic covalent bonds enabled robust and self-healing superhydrophobic coatings with multifunctions [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 359 . |
MLA | Gu, Jing et al. "Dynamic covalent bonds enabled robust and self-healing superhydrophobic coatings with multifunctions" . | SEPARATION AND PURIFICATION TECHNOLOGY 359 (2025) . |
APA | Gu, Jing , Zhao, Limin , Ala, Uddin Md , Zhao, Kaiying , Liu, Hui , Zhang, Wei et al. Dynamic covalent bonds enabled robust and self-healing superhydrophobic coatings with multifunctions . | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 359 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |