• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:邱挺

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 37 >
Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam SCIE
期刊论文 | 2025 , 360 | SEPARATION AND PURIFICATION TECHNOLOGY
Abstract&Keyword Cite Version(2)

Abstract :

To cope with small production quantities of specialized chemicals, modular production plants have gained increasing attention in recent years. Zero-gravity distillation (ZGD) is a small-scale distillation process, which offers high separation efficiency, proving advantageous for modularizing processes. In this research, the study of ZGD process intensification is conducted. A ZGD experimental setup was established and the separation of ethanol/water mixtures was chosen as an example to investigate the effects of metal foam material, liquid filling rate, and PPI of metal foam on the separation performance, which was quantified by height equivalent to a theoretical plate (HETP). The results reveal that under constant feed volume (50 ml) and the mole fraction of ethanol (0.2), employing 40 PPI copper foam and 100 % liquid filling rate results in HETP of 5.56 cm for ZGD unit, demonstrating superior separation performance. Subsequently, an optimization strategy adopting sandwich internal structure with ordered hierarchical meta foam is proposed to further intensify the separation process. In contrast to the case of employing 40 PPI copper foam and liquid filling rate of 100 %, the optimization strategy can further reduce HETP by approximately 18.17 %, being 4.55 cm. This finding provides a theoretical foundation and technical guidance for developing zero-gravity distillation technology.

Keyword :

Height equivalent to a theoretical plate (HETP) Height equivalent to a theoretical plate (HETP) Ordered hierarchical metal foam Ordered hierarchical metal foam Process intensification Process intensification Sandwich internal structure Sandwich internal structure Separation performance Separation performance Zero-gravity distillation (ZGD) Zero-gravity distillation (ZGD)

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Yixiong , Huang, Zhibin , Jiang, Pengze et al. Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 .
MLA Lin, Yixiong et al. "Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam" . | SEPARATION AND PURIFICATION TECHNOLOGY 360 (2025) .
APA Lin, Yixiong , Huang, Zhibin , Jiang, Pengze , Wang, Qinglian , Yin, Wang , Yang, Chen et al. Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam . | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 .
Export to NoteExpress RIS BibTex

Version :

Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam EI
期刊论文 | 2025 , 360 | Separation and Purification Technology
Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam Scopus
期刊论文 | 2025 , 360 | Separation and Purification Technology
Economic and environmental assessment of reactive distillation process for cyclohexanol production with different purity intermediates SCIE
期刊论文 | 2025 , 317 | ENERGY
Abstract&Keyword Cite Version(2)

Abstract :

Given the rising demand for cyclohexanol in the nylon industry and the escalating issues of high production costs and potential environmental harm in traditional cyclohexanol production, developing a safe, environmentally friendly, and cost-effective process for producing cyclohexanol from cyclohexene is crucial. In addition, the different composition of intermediates will significantly affect the economy of each reaction unit. Therefore, this study proposed a novel reactive distillation process involving esterification, transesterification, and hydrolysis. Three reactive distillation processes of 1000 t/a capacity of cyclohexanol production with different purity intermediates were designed and optimized using a sequential iterative algorithm to minimize the total annual cost, which amounted to 422116.65 $/a. Furthermore, the energy consumption and environmental emissions were compared after optimization. By comparing the influence of various purity intermediates on each process unit, it was qualitatively determined that higher purity requirements did not necessarily yield superior results. Finally, to quantify the influence of each variable on economic performance of whole process, response surface method was performed using central composite design for minimum total annual cost objectives with a 3.25 % error between model and simulation. This study aims to guide the development of a comprehensive, costeffective, and efficient reactive distillation process for cyclohexanol production.

Keyword :

Cyclohexanol Cyclohexanol Different purity intermediates Different purity intermediates Process intensification Process intensification Reactive distillation Reactive distillation Response surface methodology Response surface methodology

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Hou, Zhengkun , Wang, Na , Ding, Qiuyan et al. Economic and environmental assessment of reactive distillation process for cyclohexanol production with different purity intermediates [J]. | ENERGY , 2025 , 317 .
MLA Hou, Zhengkun et al. "Economic and environmental assessment of reactive distillation process for cyclohexanol production with different purity intermediates" . | ENERGY 317 (2025) .
APA Hou, Zhengkun , Wang, Na , Ding, Qiuyan , Li, Hong , Qiu, Ting , Wang, Hongxing et al. Economic and environmental assessment of reactive distillation process for cyclohexanol production with different purity intermediates . | ENERGY , 2025 , 317 .
Export to NoteExpress RIS BibTex

Version :

Economic and environmental assessment of reactive distillation process for cyclohexanol production with different purity intermediates Scopus
期刊论文 | 2025 , 317 | Energy
Economic and environmental assessment of reactive distillation process for cyclohexanol production with different purity intermediates EI
期刊论文 | 2025 , 317 | Energy
Solvent-free synthesis of highly dispersed zinc-doped porous carbons as efficient dibenzothiophene adsorbents Scopus
期刊论文 | 2025 | Green Energy and Environment
Abstract&Keyword Cite

Abstract :

Designing efficient adsorbents for the deep removal of refractory dibenzothiophene (DBT) from fuel oil is vital for addressing environmental issues such as acid rain. Herein, zinc gluconate and urea-derived porous carbons SF-ZnNC-T (T represents the carbonization temperature) were synthesized without solvents. Through a temperature-controlled process of “melting the zinc gluconate and urea mixture, forming H-bonded polymers, and carbonizing the polymers,” the optimal carbon, SF-ZnNC-900, was obtained with a large surface area (2280 m2 g−1), highly dispersed Zn sites, and hierarchical pore structures. Consequently, SF-ZnNC-900 demonstrated significantly higher DBT adsorption capacity of 43.2 mg S g−1, compared to just 4.3 mg S g−1 for the precursor. It also demonstrated good reusability, fast adsorption rate, and the ability for ultra-deep desulfurization. The superior DBT adsorption performance resulted from the evaporation of residual zinc species, which generated abundant mesopores that facilitated DBT transformation, as well as the formation of Zn-Nx sites that strengthened the host-guest interaction (ΔE = −1.466 eV). The solvent-free synthesized highly dispersed Zn-doped carbon shows great potential for producing sulfur-free fuel oil and for designing metal-loaded carbon adsorbents. © 2024 Institute of Process Engineering, Chinese Academy of Sciences

Keyword :

Adsorptive desulfurization Adsorptive desulfurization Solvent-free Solvent-free Zn-doped carbon Zn-doped carbon Zn–N cooperation Zn–N cooperation

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lu, P. , Sun, Z. , Ke, X. et al. Solvent-free synthesis of highly dispersed zinc-doped porous carbons as efficient dibenzothiophene adsorbents [J]. | Green Energy and Environment , 2025 .
MLA Lu, P. et al. "Solvent-free synthesis of highly dispersed zinc-doped porous carbons as efficient dibenzothiophene adsorbents" . | Green Energy and Environment (2025) .
APA Lu, P. , Sun, Z. , Ke, X. , Ye, C. , Huang, Z. , Qiu, T. . Solvent-free synthesis of highly dispersed zinc-doped porous carbons as efficient dibenzothiophene adsorbents . | Green Energy and Environment , 2025 .
Export to NoteExpress RIS BibTex

Version :

Tunable Synthesis of Conjugated Microporous Polymers and Their Adsorption Performance Toward Heavy Metals SCIE
期刊论文 | 2025 | MACROMOLECULAR CHEMISTRY AND PHYSICS
Abstract&Keyword Cite Version(1)

Abstract :

Heavy metal contamination in water threatens human health and ecological security, necessitating efficient and sustainable remediation technologies. Adsorption is a widely used method due to its cost-effectiveness, high selectivity, and ease of operation. Among various adsorbents, conjugated microporous polymers (CMPs) have shown great potential for heavy metal removal, benefiting from their pi-conjugated structures, high surface area, tunable pore sizes, and strong metal ion interactions. However, challenges remain in synthesis and material properties. Extensive postsynthetic modifications may introduce structural complexity and compromise adsorption performance, while excessive functionalization can lead to pore blockage, reducing available adsorption sites. Additionally, inadequate distribution or low grafting density of chelating groups may weaken metal ion binding. Further challenges include enhancing selectivity, developing eco-friendly regeneration methods, improving stability in complex environments, and achieving large-scale production. Addressing these issues requires optimizing synthetic strategies, precisely incorporating functional groups, and improving pore structure control. This review summarizes recent advances in CMP-based heavy metal adsorption, discusses adsorption mechanisms and structural optimization, and identifies future research directions to advance their practical application in water purification.

Keyword :

adsorption adsorption conjugated microporous polymers conjugated microporous polymers heavy metal ions heavy metal ions water treatment water treatment

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Tang, Duanlian , Lin, Chunzhou , Lou, Xiaoyu et al. Tunable Synthesis of Conjugated Microporous Polymers and Their Adsorption Performance Toward Heavy Metals [J]. | MACROMOLECULAR CHEMISTRY AND PHYSICS , 2025 .
MLA Tang, Duanlian et al. "Tunable Synthesis of Conjugated Microporous Polymers and Their Adsorption Performance Toward Heavy Metals" . | MACROMOLECULAR CHEMISTRY AND PHYSICS (2025) .
APA Tang, Duanlian , Lin, Chunzhou , Lou, Xiaoyu , Yin, Minlei , Qiu, Ting , Chen, Jie . Tunable Synthesis of Conjugated Microporous Polymers and Their Adsorption Performance Toward Heavy Metals . | MACROMOLECULAR CHEMISTRY AND PHYSICS , 2025 .
Export to NoteExpress RIS BibTex

Version :

Tunable Synthesis of Conjugated Microporous Polymers and Their Adsorption Performance Toward Heavy Metals Scopus
期刊论文 | 2025 | Macromolecular Chemistry and Physics
Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol SCIE
期刊论文 | 2025 , 512 | CHEMICAL ENGINEERING JOURNAL
Abstract&Keyword Cite Version(1)

Abstract :

The C2-O cleavage of furanic ring is the crucial step in selective hydrogenation of furfuryl alcohol (FOL) to 1,5pentanediol (1,5-PDO). In this study, reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy (Ov) and different Co/Ni molar ratios were prepared through intercalation modification of Co-based hydrotalcite by ammonium citrate (CA), followed by calcination and reduction. The catalytic performance exhibited that a quantitative conversion of FOL with 44.4 % yield and 8.2 mmol1,5-PDO & sdot;gcat -1 & sdot;h- 1 productivity of 1,5-PDO were achieved by using Co2Ni1Al1Ox-CA(0.1) (molar ratio of Co:Ni = 2:1; molar concentration ratio of CA:Na2CO3 = 0.1) under optimal conditions. The stability test showed that Co2Ni1Al1Ox-CA(0.1) consistently rendered above 40 % yield of 1,5-PDO in seven consecutive cycles. Catalyst characterizations were carried out using a series of techniques including XPS, EPR, O2-TPD, etc. The results demonstrate that the addition of CA effectively altered the surface molar ratios of Co2+/(Co2++Co3+), thereby regulating the Ov content of the obtained catalysts. The CoO-Ov sites in the catalyst might enhance the adsorption of FOL by eta 1-(O)-alcoholic model, which weakened C2O bond on the furanic ring of FOL. Besides, the H2-TPD anslysis confirmed that the enhanced spillover of hydrogen from Ni0 onto CoO-Ov site, thereby promoting the cleavage of the C2-O bond in FOL and subsequent hydrogenation of enol intermediates. In addition, the DFT calculations imply that FOL adsorption on CoO-Ov site by eta 1-(O)-alcoholic model was significantly favorable than that on pristine CoO sites (-1.68 eV versus -1.55 eV). Consequently, this study has substantiated the crucial role played by CoO-Ov in the reaction pathway leading to 1,5-PDO formation via FOL, proposing a viable scheme for designing catalysts based on transition metals and elucidating their underlying reaction mechanism.

Keyword :

1,5-pentanediol 1,5-pentanediol Furfuryl alcohol Furfuryl alcohol Oxygen vacancy Oxygen vacancy Reduced mixed metal oxide catalysts Reduced mixed metal oxide catalysts Selective hydrogenation Selective hydrogenation

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Xi, Nan , Li, Qiwang , Chen, Yi et al. Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 .
MLA Xi, Nan et al. "Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol" . | CHEMICAL ENGINEERING JOURNAL 512 (2025) .
APA Xi, Nan , Li, Qiwang , Chen, Yi , Bao, Ruixi , Wang, Qinglian , Lin, Yixiong et al. Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol . | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 .
Export to NoteExpress RIS BibTex

Version :

Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol Scopus
期刊论文 | 2025 , 512 | Chemical Engineering Journal
Layered carbon encapsulated CuOx nanopaticles for selective hydrogenation of furfural to furfuryl alcohol EI
期刊论文 | 2024 , 565 | Molecular Catalysis
Abstract&Keyword Cite

Abstract :

Furfuryl alcohol (FOL) is commercially available by selective hydrogenation of furfural (FAL). A variety of catalysts have been developed for such purpose, among which Cu-based catalysts show superior catalytic performance. However, copper nanoparticles with complex valence states are easy to agglomerate during hydrogenation reaction, which might have a negative influence on the catalytic performance. The carbon coating is an efficient strategy to prevent the sintering of Cu-based catalysts. Herein, a strategy based on the thermal decomposition of Cu-EDTA complex was designed to prepare carbon encapsulated Cu-based catalysts. The prepared catalysts were applied in the selective hydrogenation of FAL to FOL in the batch reactor. The results showed that a nearly quantitative conversion of FAL with a selectivity of 98.7 % towards FOL was achieved using CuOx@NC-150 (molar ratio of Cu: Na4EDTA·4H2O=2:1; obtained by oxidative activation at 150 °C) under 140 °C, 3 MPa in 4 h. The performance was comparable to that of the commercial CuCr2O4 catalyst under the identical conditions. In addition, the developed carbon encapsulated Cu-based catalysts exhibited a slightly better stability than CuCr2O4 catalyst in terms of FOL yield in five consecutive cycles. XPS and XAES characterizations implied that the presence of a suitable surface ratio of Cu+/(Cu++Cu0) of the prepared catalyst may contribute to the selective hydrogenation of FAL to FOL. © 2024 Elsevier B.V.

Keyword :

Aldehydes Aldehydes Batch reactors Batch reactors Carbon Carbon Catalyst selectivity Catalyst selectivity Chromium compounds Chromium compounds Coatings Coatings Copper compounds Copper compounds Decomposition Decomposition Furfural Furfural Hydrogenation Hydrogenation Molar ratio Molar ratio Sintering Sintering

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Xi, Nan , Chen, Shiting , Bao, Ruixi et al. Layered carbon encapsulated CuOx nanopaticles for selective hydrogenation of furfural to furfuryl alcohol [J]. | Molecular Catalysis , 2024 , 565 .
MLA Xi, Nan et al. "Layered carbon encapsulated CuOx nanopaticles for selective hydrogenation of furfural to furfuryl alcohol" . | Molecular Catalysis 565 (2024) .
APA Xi, Nan , Chen, Shiting , Bao, Ruixi , Wang, Qinglian , Lin, Yixiong , Yue, Jun et al. Layered carbon encapsulated CuOx nanopaticles for selective hydrogenation of furfural to furfuryl alcohol . | Molecular Catalysis , 2024 , 565 .
Export to NoteExpress RIS BibTex

Version :

Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure EI
期刊论文 | 2024 , 494 | Chemical Engineering Journal
Abstract&Keyword Cite

Abstract :

Compressing metal foam flow field usually causes a higher pressure drop and uncontrollable pore structure while enhancing the water discharge capability of proton exchange membrane fuel cell (PEMFC). To further enhance the water discharge capability of metal foam flow field at a low cost of pressure drop, a novel metal foam flow field exhibiting hierarchical pore structure(dcoarse/dfine=2; Vcoarse/Vfine=1; dfine=0.5 mm) is first introduced. This work numerically investigates water management characteristics and output performance of novel metal foam flow field. Subsequently, 3D printing technology is employed to precisely manufacture metal foam flow fields, which are compared with several flow fields in the cathode side experimentally. Experimental results demonstrate that at 1.5 A/cm2 during 3 h, the amount of water discharge in metal foam flow field with hierarchical pore structure is close to parallel flow field, which is 1.12 times and 1.30 times that in metal foam flow field with uniform coarse pore and uniform fine pore, respectively. Moreover, compared with the previous optimized strategy, namely metal foam flow field with 75 PPI and a compression rate of 0.75, metal foam flow field with hierarchical pore structure can not only improve the maximum net power density by 9.5 % and water discharge amount by 14.1 %, but also decrease two-thirds of the pressure drop in the cathode side. This research lays the theoretical groundwork and offers technical insight for the implementation of metal foam flow fields in PEMFCs. © 2024 Elsevier B.V.

Keyword :

3D printing 3D printing Cathodes Cathodes Drops Drops Flow fields Flow fields Metal foams Metal foams Parallel flow Parallel flow Pore structure Pore structure Pressure drop Pressure drop Proton exchange membrane fuel cells (PEMFC) Proton exchange membrane fuel cells (PEMFC) Water management Water management

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Sun, Yun , Lin, Yixiong , Wan, Zhongmin et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure [J]. | Chemical Engineering Journal , 2024 , 494 .
MLA Sun, Yun et al. "Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure" . | Chemical Engineering Journal 494 (2024) .
APA Sun, Yun , Lin, Yixiong , Wan, Zhongmin , Wang, Qinglian , Yang, Chen , Yin, Wang et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure . | Chemical Engineering Journal , 2024 , 494 .
Export to NoteExpress RIS BibTex

Version :

Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell Scopus
期刊论文 | 2024 , 257 | Applied Thermal Engineering
SCOPUS Cited Count: 1
Abstract&Keyword Cite

Abstract :

The balance between water discharge and mass transfer within metal foam flow field is vital for elevating the performance of proton exchange membrane fuel cell (PEMFC). To obtain an improved balance, this work designs a novel bilayer structure with two types of PPI (pore per inch) for metal foam flow field. Experimental and numerical results confirmed that arranging a metal foam featuring a smaller PPI in the layer 1 near the membrane electrode assembly (MEA) and a larger PPI in the layer 2 away from the MEA is beneficial to enhance the output performance. The excellent PPI combination for balancing mass transfer and water discharge involves utilizing a 50 PPI metal foam for the layer 1 and 110 PPI metal foam for the layer 2. Compared to conventional metal foam with 50 PPI, metal foam flow field with excellent PPI combination showcases a 11.2 % increase in water discharge and a 13.2 % boost in mass transfer, leading to a notable 23.5 % performance enhancement. Similarly, compared to conventional metal foam with 110 PPI, there is a 7.3 % decrease in mass transfer but a significant 29.5 % increases in water discharge, leading to a 15.2 % performance improvement. © 2024 Elsevier Ltd

Keyword :

Bilayer structure Bilayer structure Mass transfer Mass transfer Metal foam flow field Metal foam flow field PEMFC PEMFC Water discharge Water discharge

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Sun, Y. , Lin, Y. , Wang, Q. et al. Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell [J]. | Applied Thermal Engineering , 2024 , 257 .
MLA Sun, Y. et al. "Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell" . | Applied Thermal Engineering 257 (2024) .
APA Sun, Y. , Lin, Y. , Wang, Q. , Yin, W. , Liu, B. , Yang, C. et al. Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell . | Applied Thermal Engineering , 2024 , 257 .
Export to NoteExpress RIS BibTex

Version :

Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell SCIE
期刊论文 | 2024 , 257 | APPLIED THERMAL ENGINEERING
Abstract&Keyword Cite Version(2)

Abstract :

The balance between water discharge and mass transfer within metal foam flow field is vital for elevating the performance of proton exchange membrane fuel cell (PEMFC). To obtain an improved balance, this work designs a novel bilayer structure with two types of PPI (pore per inch) for metal foam flow field. Experimental and numerical results confirmed that arranging a metal foam featuring a smaller PPI in the layer 1 near the membrane electrode assembly (MEA) and a larger PPI in the layer 2 away from the MEA is beneficial to enhance the output performance. The excellent PPI combination for balancing mass transfer and water discharge involves utilizing a 50 PPI metal foam for the layer 1 and 110 PPI metal foam for the layer 2. Compared to conventional metal foam with 50 PPI, metal foam flow field with excellent PPI combination showcases a 11.2 % increase in water discharge and a 13.2 % boost in mass transfer, leading to a notable 23.5 % performance enhancement. Similarly, compared to conventional metal foam with 110 PPI, there is a 7.3 % decrease in mass transfer but a significant 29.5 % increases in water discharge, leading to a 15.2 % performance improvement.

Keyword :

Bilayer structure Bilayer structure Mass transfer Mass transfer Metal foam flow field Metal foam flow field PEMFC PEMFC Water discharge Water discharge

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Sun, Yun , Lin, Yixiong , Wang, Qinglian et al. Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell [J]. | APPLIED THERMAL ENGINEERING , 2024 , 257 .
MLA Sun, Yun et al. "Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell" . | APPLIED THERMAL ENGINEERING 257 (2024) .
APA Sun, Yun , Lin, Yixiong , Wang, Qinglian , Yin, Wang , Liu, Bo , Yang, Chen et al. Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell . | APPLIED THERMAL ENGINEERING , 2024 , 257 .
Export to NoteExpress RIS BibTex

Version :

Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell Scopus
期刊论文 | 2024 , 257 | Applied Thermal Engineering
Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell EI
期刊论文 | 2024 , 257 | Applied Thermal Engineering
Removal of trace Na and K metal ions by resin-grafted crown ether for electronic-grade N-methyl pyrrolidone purification SCIE
期刊论文 | 2024 , 356 | SEPARATION AND PURIFICATION TECHNOLOGY
Abstract&Keyword Cite Version(2)

Abstract :

The semiconductor industry's rapid evolution necessitates ultra-high-purity N-methyl pyrrolidone (NMP) as an essential electronic-grade solvent. The development of an efficient coordination material to reduce trace metal ions, particularly Na and K metal ions, to below 1 ppb in NMP solution is a significant challenge. To address this, a novel coordination material, St-DVB-g-ACE, has been developed for the removal of Na and K metal ions from NMP. The material was synthesized by grafting 4 '-aminobenzo-15-crown-5-ether onto a strong acid gel resin. The resulting St-DVB-g-ACE-3 exhibited excellent coordination performance for Na and K metal ions, with maximum Langmuir adsorption capacities reaching 20,000 mu g/g and 33,333 mu g/g, respectively. Of particular interest was the ability of St-DVB-g-ACE-3 to reduce all trace metal ions in industrial-grade NMP to below 1 ppb within a fixed bed column, achieving the stringent requirements for electronic-grade NMP at the G3 level. Additionally, the absorbent enhances the purity of NMP from 99.82 % to 99.84 %, indicating that the material is not dissolved and can exist stably in NMP. Its excellent recyclability and reproducibility make it highly practical for industrial use. Density functional theory (DFT) simulation, complemented by spectral analyses, revealed the interaction force and thermodynamic properties between Na and K metal ions and crown ether ring, and illustrated the interaction between anionic sulfonic group (- SO3- ) and metal ions. The prepared resin-grafted crown ether adsorbents are highly effective in the thorough removal of trace metal ions from NMP solution, offering a novel and effective method for the production of electronic-grade NMP.

Keyword :

4 ' -Aminobenzo-15-crown-5-ether 4 ' -Aminobenzo-15-crown-5-ether Electronic-grade NMP Electronic-grade NMP Removal of trace Na and K metal ions Removal of trace Na and K metal ions Resin Resin The coordination mechanism The coordination mechanism

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Chang, Zhouxin , Guo, Wenli , Yang, Chen et al. Removal of trace Na and K metal ions by resin-grafted crown ether for electronic-grade N-methyl pyrrolidone purification [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2024 , 356 .
MLA Chang, Zhouxin et al. "Removal of trace Na and K metal ions by resin-grafted crown ether for electronic-grade N-methyl pyrrolidone purification" . | SEPARATION AND PURIFICATION TECHNOLOGY 356 (2024) .
APA Chang, Zhouxin , Guo, Wenli , Yang, Chen , Ye, Changshen , Wang, Qinglian , Li, Bochen et al. Removal of trace Na and K metal ions by resin-grafted crown ether for electronic-grade N-methyl pyrrolidone purification . | SEPARATION AND PURIFICATION TECHNOLOGY , 2024 , 356 .
Export to NoteExpress RIS BibTex

Version :

Removal of trace Na and K metal ions by resin-grafted crown ether for electronic-grade N-methyl pyrrolidone purification EI
期刊论文 | 2025 , 356 | Separation and Purification Technology
Removal of trace Na and K metal ions by resin-grafted crown ether for electronic-grade N-methyl pyrrolidone purification Scopus
期刊论文 | 2025 , 356 | Separation and Purification Technology
10| 20| 50 per page
< Page ,Total 37 >

Export

Results:

Selected

to

Format:
Online/Total:189/9983879
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1