Query:
学者姓名:蔡伟龙
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
The growing complexity of dyeing and printing effluents has presented considerable challenges for their effective treatment and recycling. Recently, there has been a notable increase in the development of loose nanofiltration (NF) membranes, which are characterised by their exceptional environmental resilience, high throughput, and superior dye/salt selectivity. This work presents the development of a new loose NF membrane prepared from a modified polymer called poly(ether sulfone ether ketone ketone) (PESEKK). The membrane features a dense- loose-support structure and is prepared through a straightforward one-step, non-solvent induced phase separation (NIPS) technique, eliminating the need for heating or post-treatment. Precise regulation of membrane pore size down to 4.27 nm can be achieved through modulation of PESEKK and pore-former composition. The membranes could separate positively and negatively charged dyes in mixed dye solutions accurately and selectively. Additionally, the membrane demonstrated exceptional dye/salt selective separation with a high water flux of 230.7 L m- 2 h- 1 bar- 1 , Congo red rejection of 99.91 +/- 0.13 %, NaCl rejection of 2.71 +/- 0.23 %, and a separation factor (alpha) of 347.4, outperforming state-of-the-art membranes. Remarkably, PESEKK membrane maintained outstanding stability and separation performance for up to 200 h under extreme environments, including NaOH solution (up to 9 mol L-1), NaClO solution (up to 40,000 mg L-1 h), n-hexane, isopropanol, and methanol. This high-performing loose NF membrane, developed using innovative polymer materials, offers a promising solution for treating the challenging wastewater generated by printing and dyeing processes.
Keyword :
Dense-loose-supporting structure Dense-loose-supporting structure Dye/salt separation Dye/salt separation Loose nanofiltration Loose nanofiltration Non-solvent induced phase separation Non-solvent induced phase separation Poly(ether sulfone ether ketone ketone) Poly(ether sulfone ether ketone ketone)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Hongxiang , Lai, Xing , You, Jian et al. Facile construction of novel poly(ether sulfone ether ketone ketone) loose nanofiltration membrane for efficient dye/salt separation [J]. | DESALINATION , 2025 , 601 . |
MLA | Zhang, Hongxiang et al. "Facile construction of novel poly(ether sulfone ether ketone ketone) loose nanofiltration membrane for efficient dye/salt separation" . | DESALINATION 601 (2025) . |
APA | Zhang, Hongxiang , Lai, Xing , You, Jian , Wang, Wei , Wu, Meihua , Liu, Longmin et al. Facile construction of novel poly(ether sulfone ether ketone ketone) loose nanofiltration membrane for efficient dye/salt separation . | DESALINATION , 2025 , 601 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Highly permeable polyamide (PA) membranes with precise ion selection can be used for many energy-efficient chemical separations but are limited by membrane inefficiencies. Herein, polyphenol-mediated ZIF-8 nano- particles with hydroxyl-rich hollow structure were synthesized by tannic acid tailored regulation. PA-based membranes with fast penetration, high retention, and precise Cl-/SO42- selection were then synthesized through spatially and temporally controlling interfacial polymerization with modified ZIF-8 nanoparticles (tZIF8) as aqueous phase additives or as interlayers. The effects of the embedding position of tZIF-8 on the structure, morphology, physicochemical properties, and performance of PA-based membranes were explored through a sequence of characterization techniques. The results revealed that the PA-based membrane with tZIF-8 embedded in the PA layer could achieve a high water permeance of 24.8 L m- 2 h- 1 bar- 1 with a high retention of 99.4 % Na2SO4 and a Cl-/SO42- selectivity of 141, which was superior to most state-of-the-art PA-based membranes. Comparatively, the Cl-/SO42- selection of the PA-based membrane with tZIF-8 embedded between the PA layer and the substrate was 136, while the water permeance was slightly enhanced to 28.2 L m- 2 h- 1 bar- 1 . Excitingly, the resulting membranes all exhibit superior antifouling properties and stability. Our facile strategy for tuning membrane microstructures provides new ideals into the development of highly permeable and excellently selective PA-based membranes for precise ion sieving.
Keyword :
Different embedding positions Different embedding positions Interfacial polymerization Interfacial polymerization Ion sieving Ion sieving Nanoparticles Nanoparticles Spatial-temporal regulation Spatial-temporal regulation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lai, Xing , Zhang, Hongxiang , Xu, Weiye et al. Polyamide membranes with tannic acid-ZIF-8 for highly permeable and selective ion-ion separation [J]. | JOURNAL OF MEMBRANE SCIENCE , 2025 , 714 . |
MLA | Lai, Xing et al. "Polyamide membranes with tannic acid-ZIF-8 for highly permeable and selective ion-ion separation" . | JOURNAL OF MEMBRANE SCIENCE 714 (2025) . |
APA | Lai, Xing , Zhang, Hongxiang , Xu, Weiye , You, Jian , Chen, Huaiyin , Li, Yongzhao et al. Polyamide membranes with tannic acid-ZIF-8 for highly permeable and selective ion-ion separation . | JOURNAL OF MEMBRANE SCIENCE , 2025 , 714 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Green hydrogen is currently the dominant trend in the evolution of hydrogen energy, producing almost no greenhouse gas emissions. Alkaline water electrolysis (AWE) is recognized as a leading and well-established technology for producing green hydrogen. However, safety hazards may occur during hydrogen production currently as defective commercial separate membranes used in the AWE process. Therefore, it is imperative to create a membrane characterized by low area resistance, high stability, and high bubble point pressure (BPP) to realize high-performance AWE. Herein, we synthesize alumina-based composite membranes with Y2O3-added and polyethylene glycol coupling agent functionalized Al2O3 for AWE through a phase inversion method. The porous composite membrane exhibits excellent hydrophilicity, with a lower contact angle of approximately 55 degrees. It also presents exceptional performance metrics, including a low area resistance of about 0.17 Omega cm(2), an ultrahigh BBP of approximately 4.4 bar, and excellent mechanical properties with a tensile strength of around 25 MPa. The membranes achieved a current density of up to 2.5 A cm(-2) under 2.0 V voltage in a 30 wt% KOH solution at 80 degrees C by utilizing commercial catalysts. Notably, the composite membranes exhibited remarkable stability, maintaining operation for over 1200 h at a 2.0 A cm(-2) current density without any performance degradation at 80 degrees C. Furthermore, this composite membrane possesses outstanding gas-barrier capability with H-2 and O-2 purity higher than 98.70 % and 99.69 %, respectively. The above results demonstrate that the prepared novel high-performance alumina-based composite membrane for hydrogen generation has significant potential for applications within the AWE process.
Keyword :
Alkaline water electrolysis Alkaline water electrolysis Composite membrane Composite membrane Functionalized alumina Functionalized alumina High current density High current density Hydrophilicity Hydrophilicity
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lu, Jinyu , You, Jian , Chang, Ben et al. Polyethylene glycol functionalized alumina-based composite membrane with high-performance for alkaline water electrolysis [J]. | JOURNAL OF MEMBRANE SCIENCE , 2025 , 725 . |
MLA | Lu, Jinyu et al. "Polyethylene glycol functionalized alumina-based composite membrane with high-performance for alkaline water electrolysis" . | JOURNAL OF MEMBRANE SCIENCE 725 (2025) . |
APA | Lu, Jinyu , You, Jian , Chang, Ben , Wang, Wei , Li, Yongzhao , Lin, Jiabin et al. Polyethylene glycol functionalized alumina-based composite membrane with high-performance for alkaline water electrolysis . | JOURNAL OF MEMBRANE SCIENCE , 2025 , 725 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Flexible thermal insulation membrane plays a key role in outdoor wear of human body and thermal management of electronic products. This study used electrospinning to prepare thermal insulation hollow silica/polytetrafluoroethylene (HSi/PTFE) fiber membranes. HSi were prepared using tetraethylorthosilicate as the silicon source and hydrothermal carbon spheres as templates. A spinning solution of PTFE containing the HSi was used to prepare fiber membranes. The heat transfer resistance of the fiber is improved by embedding HSi into the PTFE fiber, resulting to improved heat insulation capability of the fiber membrane. The influence of HSi content on the thermal insulation performance of PTFE fiber membrane was studied. When the HSi content was 5 %, the fiber membrane showed the lowest thermal conductivity (0.0197 W/(m·K)), which was not only lower than most fiber thermal insulation materials, but also had excellent tensile properties (tensile deformation capacity of 168 %), which was convenient for practical application. In addition, this kind of fiber membrane also has high hydrophobicity (water contact angle of 147°), effectively reducing the influence of moisture on thermal insulation performance. This work presents innovative prospects for the future advancement of thermal insulation materials. © 2024 Elsevier Ltd
Keyword :
Electrospinning Electrospinning Fiber membrane Fiber membrane Hollow silica Hollow silica Polytetrafluoroethylene Polytetrafluoroethylene Thermal insulation Thermal insulation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, G. , Wang, L. , You, J. et al. Preparation of hollow silica/PTFE fiber membrane with excellent thermal insulation performance by electrospinning [J]. | Applied Thermal Engineering , 2024 , 255 . |
MLA | Wang, G. et al. "Preparation of hollow silica/PTFE fiber membrane with excellent thermal insulation performance by electrospinning" . | Applied Thermal Engineering 255 (2024) . |
APA | Wang, G. , Wang, L. , You, J. , Yang, Y. , Wang, Y. , Wang, W. et al. Preparation of hollow silica/PTFE fiber membrane with excellent thermal insulation performance by electrospinning . | Applied Thermal Engineering , 2024 , 255 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Particulate matter (PM) pollution causes critical harm to human health and global environment. However, the protective respirators attain high-performance filtration of the most permeable PM0.3 by tight stacking of fibers and seriously compromising their wearing comfort. Herein, a fluffy sandwich-structured membrane (SSM) composed of bimodal fibrous layers and bead-on-string fibrous layer is designed to endow the air filter with both high-performance filtration and superior thermal-wet comfort. Based on the electrospinning technique, the bimodal fibers made of nano-/submicron-fibers (about 46 nm and 155 nm) are formed by inducing the jet splitting while the bead-on-string fibers consisting of submicron-fibers (≈ 120 nm) and micro-beads (≈ 3.37 μm) are prepared through manipulating the Rayleigh instability of jets. Due to the structural design of small pores and low packing density, the SSM exhibits excellent PM0.3 removal of 99.8%, low filtration resistance of 65 Pa, and high quality factor of 0.097 Pa-1. It also shows long-term filtration stability and durability under high humidity conditions. Moreover, the SSM simultaneously possesses superior thermal-wet comfort of heat dissipation, air permeability of 164 mm·s-1, and water vapor transmission of 7.6 kg·m-2·d-1. This work may offer a novel insight for exploiting high-performance and comfortable personal protective materials. © 2024 Elsevier B.V.
Keyword :
Bead-on-string fibers Bead-on-string fibers Bimodal fibers Bimodal fibers Electrospinning Electrospinning PM0.3 removal PM0.3 removal Sandwich structure Sandwich structure Thermal-wet comfort Thermal-wet comfort
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yang, Y. , Wang, W. , Zhong, M. et al. Sandwich-structured bimodal fiber/bead-on-string fiber composite membrane for comfortable PM0.3 filter [J]. | Chemical Engineering Journal , 2024 , 495 . |
MLA | Yang, Y. et al. "Sandwich-structured bimodal fiber/bead-on-string fiber composite membrane for comfortable PM0.3 filter" . | Chemical Engineering Journal 495 (2024) . |
APA | Yang, Y. , Wang, W. , Zhong, M. , Gou, Y. , Lu, N. , Cheng, Y. et al. Sandwich-structured bimodal fiber/bead-on-string fiber composite membrane for comfortable PM0.3 filter . | Chemical Engineering Journal , 2024 , 495 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The membrane fouling derived from the accumulated dust pollutants and highly viscous oily particles causes irreversible damage to the filtration performance of air filters and results in a significant reduction in their service life. However, it is still challenging to construct high-efficiency and antifouling air filtration membranes with recyclable regeneration. Herein, the fluorine-free amphiphobic micro/nanofiber composite membrane was controllably constructed by integrating click chemistry reaction and electrospinning technique. Low-surface-energy fibers were constructed by a thiol-ene click chemical reaction between mercaptosilane and vinyl groups of polystyrene-butadiene-styrene (SBS), combined with hydroxyl-terminated poly(dimethylsiloxane) during the electrospinning process. The functional air filter is then prepared by the two-layer composite strategy. Because of the advantages of liquid-like fibrous surface and micro/nanofibrous porous structure, SBS/PAN composite membrane simultaneously shows superior antifouling performances of pollutants and filtration efficiency of over 97% PM0.3 removal. More importantly, the antifouling fibrous membrane still presents a stable and efficient filtration efficiency after multiple washes. Its service life in dust filtration environments is approximately 1.7 times longer than that of the substrate membrane. This work may provide a significant reference for the design of antifouling fiber membranes and high-efficiency air filters with long life spans and reusability. © 2024 American Chemical Society.
Keyword :
Antifouling paint Antifouling paint Fibrous membranes Fibrous membranes Filtration Filtration Nafion membranes Nafion membranes Photoionization Photoionization Photolysis Photolysis Surface reactions Surface reactions
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Gou, Yukui , Yang, Yuchen , Zheng, Weiwei et al. Fluorine-Free Amphiphobic SBS/PAN Micro/Nanofiber Membrane by Integrating Click Reaction with Electrospinning for Efficient and Recyclable Air Filtration [J]. | Environmental Science and Technology , 2024 , 58 (39) : 17376-17385 . |
MLA | Gou, Yukui et al. "Fluorine-Free Amphiphobic SBS/PAN Micro/Nanofiber Membrane by Integrating Click Reaction with Electrospinning for Efficient and Recyclable Air Filtration" . | Environmental Science and Technology 58 . 39 (2024) : 17376-17385 . |
APA | Gou, Yukui , Yang, Yuchen , Zheng, Weiwei , Ji, Xuzheng , Lu, Nan , Wang, Wenqing et al. Fluorine-Free Amphiphobic SBS/PAN Micro/Nanofiber Membrane by Integrating Click Reaction with Electrospinning for Efficient and Recyclable Air Filtration . | Environmental Science and Technology , 2024 , 58 (39) , 17376-17385 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Polyphenylene sulfide (PPS), commonly used as a core material for high -temperature flue gas treatment, exhibits elevated viscosity when processed even at temperature exceeding 280 degrees C. In this study, a novel high-flowability PPS -based composite was fabricated through the incorporation of graphitic carbon nitride (g-C3N4) via a wellestablished melt extrusion procedure. The enhancement of flowability in PPS was verified, and the material's texture structures and fundamental properties of composites with varying contents were determined. The composites exhibit well -dispersed g-C3N4, a significant reduction in shear viscosity (>10 %), a notable increase in melt index (>30 %), improved crystallinity, and comparable or superior performance compared to pure PPS. When the g-C(3)N(4 )was introduced into the PPS matrix, a phase -separated composite structure was formed. This structure reduces the entanglement degree between the PPS molecular chains and provides more space for freemovement of the PPS chains, and thus the improvement in flowability for the composites can be clearly demonstrated. Therefore, g-C(3)N(4 )can be used as a novel flow modifier to enhance the flowability and stability of PPS resin without compromising its fundamental properties, which offers significant prospects for improving productivity, optimizing energy usage, and managing costs for PPS -based products.
Keyword :
Graphitic carbon nitride (g-C3N4) Graphitic carbon nitride (g-C3N4) High flowability High flowability Melt blending Melt blending Phase-separated structure Phase-separated structure Polyphenylene sulfide (PPS) Polyphenylene sulfide (PPS)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Cao, Hong , Zhang, Bing , Wang, Wei et al. Development of high-flowability melt PPS-based composites through blending with g-C3N4 [J]. | POLYMER , 2024 , 293 . |
MLA | Cao, Hong et al. "Development of high-flowability melt PPS-based composites through blending with g-C3N4" . | POLYMER 293 (2024) . |
APA | Cao, Hong , Zhang, Bing , Wang, Wei , Li, Yongzhao , Jia, Mengke , Yu, Weihe et al. Development of high-flowability melt PPS-based composites through blending with g-C3N4 . | POLYMER , 2024 , 293 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Flexible thermal insulation membrane plays a key role in outdoor wear of human body and thermal management of electronic products. This study used electrospinning to prepare thermal insulation hollow silica/polytetrafluoroethylene (HSi/PTFE) fiber membranes. HSi were prepared using tetraethylorthosilicate as the silicon source and hydrothermal carbon spheres as templates. A spinning solution of PTFE containing the HSi was used to prepare fiber membranes. The heat transfer resistance of the fiber is improved by embedding HSi into the PTFE fiber, resulting to improved heat insulation capability of the fiber membrane. The influence of HSi content on the thermal insulation performance of PTFE fiber membrane was studied. When the HSi content was 5 %, the fiber membrane showed the lowest thermal conductivity (0.0197 W/(m center dot K)), which was not only lower than most fiber thermal insulation materials, but also had excellent tensile properties (tensile deformation capacity of 168 %), which was convenient for practical application. In addition, this kind of fiber membrane also has high hydrophobicity (water contact angle of 147 degrees), effectively reducing the influence of moisture on thermal insulation performance. This work presents innovative prospects for the future advancement of thermal insulation materials.
Keyword :
Electrospinning Electrospinning Fiber membrane Fiber membrane Hollow silica Hollow silica Polytetrafluoroethylene Polytetrafluoroethylene Thermal insulation Thermal insulation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Guotao , Wang, Lin , You, Jian et al. Preparation of hollow silica/PTFE fiber membrane with excellent thermal insulation performance by electrospinning [J]. | APPLIED THERMAL ENGINEERING , 2024 , 255 . |
MLA | Wang, Guotao et al. "Preparation of hollow silica/PTFE fiber membrane with excellent thermal insulation performance by electrospinning" . | APPLIED THERMAL ENGINEERING 255 (2024) . |
APA | Wang, Guotao , Wang, Lin , You, Jian , Yang, Yuchen , Wang, Yuanze , Wang, Wei et al. Preparation of hollow silica/PTFE fiber membrane with excellent thermal insulation performance by electrospinning . | APPLIED THERMAL ENGINEERING , 2024 , 255 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The application of fluorinated coatings on textiles has garnered substantial research interest over the past years, owing to their ability to endow fabrics with exceptional hydrophobic characteristics, thereby mitigating issues associated with high moisture absorption and susceptibility to contamination. Nevertheless, the deployment of fluorinated substances has been proscribed due to concerns regarding their ecological impact and potential human toxicity. Consequently, there has been a burgeoning demand for hydrophobic textile alternatives derived from non-fluorinated, natural materials that are both sustainable and environmentally benign. This paper presents a thorough overview of the advancements in the development and functionalization of eco-friendly, hydrophobic textiles. Initially, the natural materials and their derivatives utilized in the creation of superhydrophobic textiles are delineated, including cellulose, lignin and chitosan, among others. Subsequently, methodologies for crafting efficient, stable, and resilient hydrophobic textiles are elucidated, encompassing conventional techniques as well as novel, inventive concepts. Furthermore, the current state of research and the obstacles faced in the evolution of multifunctional textiles based on superhydrophobic fabrics are examined. In conclusion, this discussion presents incisive insights into the impending direction of advancements in functional textiles. Keywords: Eco-friendly; Superhydrophobic; Bioinspired; Multifunctional textiles; Natural materials. © 2024 RSC.
Keyword :
Abiotic Abiotic Ecodesign Ecodesign Ecology Ecology Fabrics Fabrics Textile industry Textile industry
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Wei , Yang, Libing , Huang, Jianying et al. Progress on fiber engineering for fabric innovation in ecological hydrophobic design and multifunctional applications [J]. | Industrial Chemistry and Materials , 2024 , 2 (3) : 393-423 . |
MLA | Li, Wei et al. "Progress on fiber engineering for fabric innovation in ecological hydrophobic design and multifunctional applications" . | Industrial Chemistry and Materials 2 . 3 (2024) : 393-423 . |
APA | Li, Wei , Yang, Libing , Huang, Jianying , Zheng, Chan , Chen, Yu , Li, Yunbo et al. Progress on fiber engineering for fabric innovation in ecological hydrophobic design and multifunctional applications . | Industrial Chemistry and Materials , 2024 , 2 (3) , 393-423 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Organic solvent nanofiltration (OSN) is a green, energy-saving, and highly efficient emerging membrane separation technology, and there is an urgent need for robust, easy-to-process OSN membranes with high permeance and small solute selectivity for industrial applications. Herein, we propose a new strategy for accurately designing novel OSN membranes. Specifically, a polyamide (PA) interlayer was synthesized in-situ on the surface of homogeneous reinforced poly(p-phenylene terephthamide) (PPTA) hollow fiber membrane by interfacial polymerization (IP) using both ultra-low concentrations piperazine (PIP, 0.05 wt%) and trimesoyl chloride (TMC, 0.005 wt%), and then a defect-free and dense PPy layer was deposited on top of the hydrophilic PA interlayer by chemical vapor deposition (CVD) process to prepare PA/PPy composite membranes with spherical cluster or strip cluster "Turing-like" structure. The resulting PA/PPy composite membranes presented an excellent high selective permeability, the dimethylacetamide (DMAc) permeability was 21.1 Lm(-2)h(-1)MPa-1, and the molecular weight cut-off (MWCO) was as low as 185 Da. A 30-hour OSN test at elevated temperatures (80 degrees C) and in organic solvent (DMAc), as well as a one-month immersion test in ethanol and DMAc at room temperature, demonstrated superior separation performance and structural stability of the membranes, indicating their application potential in harsh solvent systems. Our novel method for developing nanoscale ordered structured PA/PPy composite membranes offers great potential for the development of multilevel structural designs in the preparation of high-performance OSN membranes with potential industrial applications.
Keyword :
Chemical vapor deposition Chemical vapor deposition Hollow fiber Hollow fiber Interfacial polymerization Interfacial polymerization Interlayer Interlayer Organic solvent nanofiltration Organic solvent nanofiltration Poly(p-phenylene terephthamide) Poly(p-phenylene terephthamide)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lai, Xing , Wang, Chun , Chen, Huaiyin et al. Controllable preparation of novel homogenous reinforcement poly (p-phenylene terephthamide) hollow fiber nanofiltration membrane with nanoscale ordered structures for organic solvent nanofiltration [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2024 , 338 . |
MLA | Lai, Xing et al. "Controllable preparation of novel homogenous reinforcement poly (p-phenylene terephthamide) hollow fiber nanofiltration membrane with nanoscale ordered structures for organic solvent nanofiltration" . | SEPARATION AND PURIFICATION TECHNOLOGY 338 (2024) . |
APA | Lai, Xing , Wang, Chun , Chen, Huaiyin , Zhu, Tianxue , Huang, Jianying , Xiao, Changfa et al. Controllable preparation of novel homogenous reinforcement poly (p-phenylene terephthamide) hollow fiber nanofiltration membrane with nanoscale ordered structures for organic solvent nanofiltration . | SEPARATION AND PURIFICATION TECHNOLOGY , 2024 , 338 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |