Query:
学者姓名:邹阳
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
为研究温度对油纸绝缘频域介电谱的影响,并探索高效的频温归一化策略以消除不同环境因素带来的测试温度误差,该文提出了基于极化复电容实部一阶微分解谱的多弛豫分解方法.首先,利用微分图谱特征划分出低频弛豫、中低频多弛豫、高频弛豫三类不同弛豫区间进行频温介电机理推演,发现各弛豫过程温度特性差异显著;其次,以Arrhenius衍生方程计算不同弛豫的活化能,基于该频温特性参量提取介质中多类贡献分量的频温频移因子,还原标准温度下的介电图谱;最后,利用不同温度及不同老化程度的试样验证该方法.实验分析表明,该方法很好地解决了传统频温归一法所存在的偏差,且对于不同老化程度的介质具有较好的适用性,可为现场测试提供可靠的理论支撑.
Keyword :
弛豫活化能 弛豫活化能 微分解谱 微分解谱 油纸绝缘 油纸绝缘 频域介电法 频域介电法 频温归一化 频温归一化
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 邹阳 , 黄煜 , 方梦泓 et al. 基于微分解谱的油纸绝缘多弛豫频温机理与归一化研究 [J]. | 电工技术学报 , 2025 , 40 (5) : 1575-1586 . |
MLA | 邹阳 et al. "基于微分解谱的油纸绝缘多弛豫频温机理与归一化研究" . | 电工技术学报 40 . 5 (2025) : 1575-1586 . |
APA | 邹阳 , 黄煜 , 方梦泓 , 姚雨佳 , 金涛 . 基于微分解谱的油纸绝缘多弛豫频温机理与归一化研究 . | 电工技术学报 , 2025 , 40 (5) , 1575-1586 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
通过介电响应等效建模,探究热老化对油纸绝缘微观介电特性的影响,揭示宏观频谱特征变化的微观机制.首先,利用Kramers-Kronig变换在宽频带内提取电导过程、非弥散极化过程和弛豫极化过程的独立谱图;其次,根据电导和极化过程的典型频谱特征,明确油纸绝缘宽频介电响应的构成,构建等效电路模型;最后,通过等效电路模型分析,探究热老化对油纸绝缘微观介电特性的影响规律.研究表明,油纸绝缘宽频介电谱特征受电导损耗、非弥散极化过程、弛豫峰型响应和低频弥散响应的共同影响.随着热老化程度的加深,绝缘体系内部的偶极子和载流子浓度均增大,弛豫响应速率加快,偶极子的簇内运动特性减弱,使得复电容虚部测试谱线的数值在整个宽频带内增大,整体谱线向高频方向移动且损耗峰特征明显增强.
Keyword :
Dissado-Hill模型 Dissado-Hill模型 Kramers-Kronig变换 Kramers-Kronig变换 微观介电特性 微观介电特性 油纸绝缘 油纸绝缘 热老化 热老化 等效建模 等效建模
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 林昕亮 , 邹阳 , 陈啸轩 et al. 热老化对油纸绝缘微观介电特性的影响 [J]. | 福州大学学报(自然科学版) , 2025 , 53 (1) : 42-50 . |
MLA | 林昕亮 et al. "热老化对油纸绝缘微观介电特性的影响" . | 福州大学学报(自然科学版) 53 . 1 (2025) : 42-50 . |
APA | 林昕亮 , 邹阳 , 陈啸轩 , 林锦茄 . 热老化对油纸绝缘微观介电特性的影响 . | 福州大学学报(自然科学版) , 2025 , 53 (1) , 42-50 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
油纸绝缘作为电力变压器中的主绝缘设备,在工业生产和电力传输应用中尤为重要,为验证油纸绝缘的性能状态,该文研制了基于介质响应原理的现场可编程电力电子控制实验平台.平台以LabVIEW编程环境和三电极测试装置作为载体,采用状态机框架设计了回复电压谱与极化谱测量流程,并嵌入聚类云模型算法实现油纸绝缘状态精准分类.该实验平台可促进理论知识与实践经验相结合的教学模式革新,满足实验探索、科学研究等多层次需求.
Keyword :
回复电压测试 回复电压测试 实验平台设计 实验平台设计 数字编程控制 数字编程控制 油纸绝缘 油纸绝缘
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 邹阳 , 黄煜 , 方梦泓 et al. 基于介质响应原理的变压器油纸绝缘测试实验平台设计 [J]. | 实验技术与管理 , 2025 , 42 (1) : 176-183 . |
MLA | 邹阳 et al. "基于介质响应原理的变压器油纸绝缘测试实验平台设计" . | 实验技术与管理 42 . 1 (2025) : 176-183 . |
APA | 邹阳 , 黄煜 , 方梦泓 , 石松浩 , 姚雨佳 , 高伟 . 基于介质响应原理的变压器油纸绝缘测试实验平台设计 . | 实验技术与管理 , 2025 , 42 (1) , 176-183 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Electricity theft detection is very important for the economic benefits of power companies and the effectiveness of safe operation of power systems. At present, the traditional power theft detection method can only identify whether the user has power theft, but cannot perform rapid and accurate inspections for various types of power theft users. Aiming at the characteristics of medium-voltage users with large power consumption and regular power consumption, this paper proposed a method for detecting the type of power theft in medium-voltage distribution lines based on robust regression and convolutional neural network. Firstly, considering the existence of abnormal data due to factors such as communication delay interruption, a robust regression algorithm is used to reduce its impact and improve the accuracy of regression analysis. Secondly, the correction coefficient and error term of each user obtained by regression are taken as the characteristics of user stealing electricity, and input into the convolutional neural network model for training to complete the identification of stealing electricity type. Finally, the method is verified by simulation and measured data. The results show that under different disturbance conditions, the proposed method can accurately identify different types of power stealing behaviors, which can better assist on-site investigation, narrow the investigation scope and improve the verification rate. © 2024 The Author(s)
Keyword :
Convolution Convolution Convolutional neural networks Convolutional neural networks Electric power utilization Electric power utilization Electric utilities Electric utilities Power quality Power quality Regression analysis Regression analysis Smart meters Smart meters Voltage distribution measurement Voltage distribution measurement
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yi, Zhang , Min, Chen , Yang, Zou et al. Detection of medium-voltage electricity theft types based on robust regression and convolutional neural network [J]. | International Journal of Electrical Power and Energy Systems , 2024 , 160 . |
MLA | Yi, Zhang et al. "Detection of medium-voltage electricity theft types based on robust regression and convolutional neural network" . | International Journal of Electrical Power and Energy Systems 160 (2024) . |
APA | Yi, Zhang , Min, Chen , Yang, Zou , Rong, Xin , Chen, Gao , Hua, Lin . Detection of medium-voltage electricity theft types based on robust regression and convolutional neural network . | International Journal of Electrical Power and Energy Systems , 2024 , 160 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
To address the limitations of the Debye model and its derived models in effectively capturing the microscopic properties of dielectric materials, this study focuses on the wideband dielectric response of oil-paper insulation and conducts equivalent modelling research. Firstly, the Kramers-Kronig (K-K) transform is applied to extract the independent spectra of the conductivity process, non-dispersive polarization process, and relaxation polarization process within a wide frequency band, clarifying the composition of the broadband dielectric response of oil-paper insulation. Then, based on the spectral analysis results, electrical units are selected to construct the equivalent model. Finally, a method combining the K-K transform with the Grey Wolf Optimization (GWO) algorithm for model parameter identification is proposed. The study demonstrates that under the influence of a wideband alternating electric field, oil-paper insulation exhibits the conductivity process, low-frequency dispersive response, relaxation-peak type response, and non-dispersive polarization process. Based on this finding, the proposed equivalent model for dielectric response effectively characterizes the complex polarization processes of oil-paper insulation, providing the necessary model foundation for the analysis of dielectric responses.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xinliang Lin , Yang Zou . Research on equivalent modeling of wideband dielectric response of oil-paper insulation based on the Kramers-Kronig transform [J]. | Journal of Physics:Conference Series , 2024 , 2803 (1) . |
MLA | Xinliang Lin et al. "Research on equivalent modeling of wideband dielectric response of oil-paper insulation based on the Kramers-Kronig transform" . | Journal of Physics:Conference Series 2803 . 1 (2024) . |
APA | Xinliang Lin , Yang Zou . Research on equivalent modeling of wideband dielectric response of oil-paper insulation based on the Kramers-Kronig transform . | Journal of Physics:Conference Series , 2024 , 2803 (1) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Extracting feature parameters from the recovery voltage polarization spectrum is currently a widely adopted method for evaluating the status of transformer oil-paper insulation. However, the polarization spectrum is prone to anomalous feature data due to factors such as working condition interference and artificial errors, which seriously reduces the accuracy of the evaluation. In response to the above issues, this paper proposed a recovery voltage data cleaning method based on local outlier factor (LOF) and improved K-nearest neighbor (IKNN). Firstly, Maximum recovery voltage Urmax, the initial slope Sr and dominant time constant tcdom of the recovery voltage polarization spectrum were selected as aging feature parameters, and anomalous feature data in the non-standard polarization spectrum were identified and filtered out based on the LOF algorithm. Secondly, the Fuzzy C-means (FCM) clustering algorithm was used to reduce the interference of noise points on the KNN algorithm, and the correlations between various features were highlighted by weighted Euclidean distance scale. Then, a data filling model architecture based on IKNN was constructed to fill in missing feature data. Finally, multiple sets of measured data were incorporated to validate the effectiveness of the proposed data cleaning method. The results indicate that the accuracy of status evaluation after data cleaning has increased by about 50% compared to the original data, which effectively improves the quality of transformer recovery voltage data and lays a solid foundation for accurate perception of transformer operation status. © 2024 Editorial Office of EMI Journal. All rights reserved.
Keyword :
feature data cleaning feature data cleaning improved K-nearest neighbor algorithm improved K-nearest neighbor algorithm local outlier factor algorithm local outlier factor algorithm oil-paper insulation oil-paper insulation recovery voltage polarization spectrum recovery voltage polarization spectrum
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, X. , Zou, Y. , Weng, Z. et al. Recovery voltage data cleaning method for transformer based on IKNN and LOF; [基于 IKNN 和 LOF 的变压器回复电压数据清洗方法研究] [J]. | Journal of Electronic Measurement and Instrumentation , 2024 , 38 (2) : 92-100 . |
MLA | Chen, X. et al. "Recovery voltage data cleaning method for transformer based on IKNN and LOF; [基于 IKNN 和 LOF 的变压器回复电压数据清洗方法研究]" . | Journal of Electronic Measurement and Instrumentation 38 . 2 (2024) : 92-100 . |
APA | Chen, X. , Zou, Y. , Weng, Z. , Lin, J. , Lin, X. , Zhang, Y. . Recovery voltage data cleaning method for transformer based on IKNN and LOF; [基于 IKNN 和 LOF 的变压器回复电压数据清洗方法研究] . | Journal of Electronic Measurement and Instrumentation , 2024 , 38 (2) , 92-100 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
采用计算机仿真分析方法,对两种沉降方式下4种工况的覆土式储罐进行数值仿真计算,得到8种不同条件下覆土式储罐的应力应变分布云图,基于云图结果对储罐许用极限进行预测,同时进行强度与模态计算分析。计算结果显示,最大应力集中于壳体与气室连接处;由仿真模拟结果可得,计算屈服评价指标均小于实际工程要求的许用应力值,表明在8种工况下罐体满足强度要求;模态计算结果表明,覆土工况下的储罐处于稳定状态。
Keyword :
多工况 多工况 应力应变 应力应变 模型预测 模型预测 沉降方式 沉降方式 覆土式储罐 覆土式储罐 计算机仿真分析 计算机仿真分析
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 李翊 , 刘杰 , 刘长沙 et al. 大型覆土式储罐多工况强度可靠性分析 [J]. | 化工机械 , 2024 , 51 (01) : 28-36 . |
MLA | 李翊 et al. "大型覆土式储罐多工况强度可靠性分析" . | 化工机械 51 . 01 (2024) : 28-36 . |
APA | 李翊 , 刘杰 , 刘长沙 , 邹阳 , 林振宇 , 蒋俊 et al. 大型覆土式储罐多工况强度可靠性分析 . | 化工机械 , 2024 , 51 (01) , 28-36 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近邻(IKNN)的回复电压数据清洗方法。首先,选取回复电压极化谱的回复电压极大值U_(rmax)、初始斜率S_r与主时间常数t_(cdom)作为老化特征参量,并基于LOF算法对非标准极化谱中的异常特征量数据进行识别与筛除。其次,利用模糊C均值(FCM)聚类算法减小噪声点对KNN算法的干扰,并通过加权欧氏距离标度突出各特征量间的关联性,进而构建出基于IKNN的数据填补模型架构以实现特征缺失数据的填补。最后,代入多组实测数据验证所提数据清洗方法的实效性。结果表明,数据清洗后的状态评估准确率相较于原有数据上升了50%左右,有效提高了变压器回复电压数据质量,为准确感知变压器运行状况奠定坚实的基础。
Keyword :
回复电压极化谱 回复电压极化谱 局部离群因子算法 局部离群因子算法 改进K最近邻算法 改进K最近邻算法 油纸绝缘 油纸绝缘 特征数据清洗 特征数据清洗
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 陈啸轩 , 邹阳 , 翁祖辰 et al. 基于IKNN和LOF的变压器回复电压数据清洗方法研究 [J]. | 电子测量与仪器学报 , 2024 , 38 (02) : 92-100 . |
MLA | 陈啸轩 et al. "基于IKNN和LOF的变压器回复电压数据清洗方法研究" . | 电子测量与仪器学报 38 . 02 (2024) : 92-100 . |
APA | 陈啸轩 , 邹阳 , 翁祖辰 , 林锦茄 , 林昕亮 , 张云霄 . 基于IKNN和LOF的变压器回复电压数据清洗方法研究 . | 电子测量与仪器学报 , 2024 , 38 (02) , 92-100 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The traditional power theft detection method can only identify whether the user has power theft, but cannot perform rapid and accurate inspections for various types of power theft users. Aiming at the characteristics of medium-voltage users with large and regular power consumption, this paper proposed a method for detecting the type of power theft in medium-voltage distribution lines based on robust regression and convolutional neural networks. Firstly, considering abnormal data due to factors such as communication delay interruption, a robust regression algorithm is used to reduce its impact and improve the accuracy of regression analysis. Secondly, the correction coefficient and error term of each user obtained by regression are taken as the characteristics of the user stealing electricity and input into the convolutional neural network model for training to complete the identification of stealing electricity type. Finally, the method is verified by simulation and measured data. The results show that under different disturbance conditions, the proposed method can accurately identify different types of power stealing behaviors, which can better assist the on-site investigation, narrow the investigation scope, and improve the verification rate. © 2024 Power System Technology Press. All rights reserved.
Keyword :
Convolution Convolution Convolutional neural networks Convolutional neural networks Power distribution lines Power distribution lines Regression analysis Regression analysis
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, Min , Zhang, Yi , Zou, Yang et al. A Medium-voltage Stealing Type Detection Method Based on Robust Regression and Convolutional Neural Network [J]. | Power System Technology , 2024 , 48 (11) : 4729-4738 . |
MLA | Chen, Min et al. "A Medium-voltage Stealing Type Detection Method Based on Robust Regression and Convolutional Neural Network" . | Power System Technology 48 . 11 (2024) : 4729-4738 . |
APA | Chen, Min , Zhang, Yi , Zou, Yang , Xin, Rong , Zhang, Liangyu , Gao, Chen et al. A Medium-voltage Stealing Type Detection Method Based on Robust Regression and Convolutional Neural Network . | Power System Technology , 2024 , 48 (11) , 4729-4738 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
To address the limitations of the Debye model and its derived models in effectively capturing the microscopic properties of dielectric materials, this study focuses on the wideband dielectric response of oil-paper insulation and conducts equivalent modelling research. Firstly, the Kramers-Kronig (K-K) transform is applied to extract the independent spectra of the conductivity process, non-dispersive polarization process, and relaxation polarization process within a wide frequency band, clarifying the composition of the broadband dielectric response of oil-paper insulation. Then, based on the spectral analysis results, electrical units are selected to construct the equivalent model. Finally, a method combining the K-K transform with the Grey Wolf Optimization (GWO) algorithm for model parameter identification is proposed. The study demonstrates that under the influence of a wideband alternating electric field, oil-paper insulation exhibits the conductivity process, low-frequency dispersive response, relaxation-peak type response, and non-dispersive polarization process. Based on this finding, the proposed equivalent model for dielectric response effectively characterizes the complex polarization processes of oil-paper insulation, providing the necessary model foundation for the analysis of dielectric responses. © Published under licence by IOP Publishing Ltd.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, X. , Zou, Y. . Research on equivalent modeling of wideband dielectric response of oil-paper insulation based on the Kramers-Kronig transform [未知]. |
MLA | Lin, X. et al. "Research on equivalent modeling of wideband dielectric response of oil-paper insulation based on the Kramers-Kronig transform" [未知]. |
APA | Lin, X. , Zou, Y. . Research on equivalent modeling of wideband dielectric response of oil-paper insulation based on the Kramers-Kronig transform [未知]. |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |