• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:陈锋

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 7 >
基于链路状态的OpenWRT多路并行传输系统的设计
期刊论文 | 2025 , 15 (1) , 72-76,79 | 物联网技术
Abstract&Keyword Cite

Abstract :

针对传统的单一链路传输无法满足流媒体业务高带宽、低延时需求的问题,基于流媒体传输协议SRT在OpenWRT系统上实现了多路并行传输,并提出了一种基于链路状态的数据分流算法.该算法根据服务器端反馈的链路信息确定链路的状态,按照每条链路的状态分配相应的传输任务量,并且在服务端实现分流合并,可以有效降低数据包的端到端时延,并提高系统传输的稳定性.实验结果表明:采用该多路并行传输系统进行传输时,数据包的端到端时延比单一链路更加稳定并且平均时延降低50%左右,系统的吞吐量也明显提高,能够较好地保证负载均衡,并且在OpenWRT系统下实现了更有利于实际业务的部署.

Keyword :

OpenWRT系统 OpenWRT系统 SRT协议 SRT协议 分流合并 分流合并 多路并行传输 多路并行传输 数据调度 数据调度 链路状态 链路状态

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 宋道斌 , 陈锋 , 余超群 . 基于链路状态的OpenWRT多路并行传输系统的设计 [J]. | 物联网技术 , 2025 , 15 (1) : 72-76,79 .
MLA 宋道斌 等. "基于链路状态的OpenWRT多路并行传输系统的设计" . | 物联网技术 15 . 1 (2025) : 72-76,79 .
APA 宋道斌 , 陈锋 , 余超群 . 基于链路状态的OpenWRT多路并行传输系统的设计 . | 物联网技术 , 2025 , 15 (1) , 72-76,79 .
Export to NoteExpress RIS BibTex

Version :

LDMP-FEC: A Real-Time Low-Latency Scheduling Algorithm for Video Transmission in Heterogeneous Networks SCIE
期刊论文 | 2025 , 14 (3) | ELECTRONICS
Abstract&Keyword Cite Version(1)

Abstract :

With the rapid development of mobile networks and devices, real-time video transmission has become increasingly important worldwide. Constrained by the bandwidth limitations of single networks, extensive research has shifted towards video transmission in multi-network environments. However, differences in bandwidth and latency in heterogeneous networks (such as LTE and Wi-Fi) lead to high latency and packet loss issues, severely affecting video quality and user experience. This paper proposes a Forward Error Correction (FEC)-based Low-Delay Multipath Scheduling algorithm (LDMP-FEC). This algorithm combines the Gilbert model with a continuous Markov chain to adaptively adjust FEC redundancy, thereby enhancing data integrity. Through the FEC Recovery Priority Scheduling (FEC-RPS) algorithm, it dynamically optimizes the transmission order of data packets, reducing the number of out-of-order packets (OFO-packets) and end-to-end latency. Experimental results show that LDMP-FEC significantly reduces the number of out-of-order packets in heterogeneous network environments, improving performance by 50% compared to the round-robin and MinRtt algorithms, while maintaining end-to-end latency within 150 ms. Under various packet loss conditions, LDMP-FEC sustains a playable frame rate (PFR) above 90% and a Peak Signal-to-Noise Ratio (PSNR) exceeding 35 dB, providing an efficient and reliable solution for real-time video and other low-latency applications.

Keyword :

FEC FEC heterogeneous networks heterogeneous networks multipath multipath OFO-packets OFO-packets round robin round robin video transmission video transmission

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Gao, Tingjin , Chen, Feng , Chen, Pingping . LDMP-FEC: A Real-Time Low-Latency Scheduling Algorithm for Video Transmission in Heterogeneous Networks [J]. | ELECTRONICS , 2025 , 14 (3) .
MLA Gao, Tingjin 等. "LDMP-FEC: A Real-Time Low-Latency Scheduling Algorithm for Video Transmission in Heterogeneous Networks" . | ELECTRONICS 14 . 3 (2025) .
APA Gao, Tingjin , Chen, Feng , Chen, Pingping . LDMP-FEC: A Real-Time Low-Latency Scheduling Algorithm for Video Transmission in Heterogeneous Networks . | ELECTRONICS , 2025 , 14 (3) .
Export to NoteExpress RIS BibTex

Version :

LDMP-FEC: A Real-Time Low-Latency Scheduling Algorithm for Video Transmission in Heterogeneous Networks Scopus
期刊论文 | 2025 , 14 (3) | Electronics (Switzerland)
基于单目视觉的输送带料流体积检测方法研究
期刊论文 | 2025 , 49 (1) , 37-41 | 电视技术
Abstract&Keyword Cite

Abstract :

针对港口矿山复杂工业环境下,带式输送机管理方式多为人工监控,传统料流检测方法存在精度差和难以落地问题,提出一种基于单目视觉与线结构光融合的输送带料流体积检测方法.首先,将线结构光投射到料流表面,用标定好的工业相机采集料流图像;其次,根据激光颜色特征,通过灰度重心法提取料流图像的激光条纹,为了防止皮带抖动带来的误差,基于负载时的激光条纹拟合出皮带空载时的激光条纹;最后,获取激光条纹上料流点的三维空间坐标,基于料流端点计算出沿皮带运行方向料流截面积与传输速度的积分得到料流体积.实验结果表明,所提出的方法具有较高的精度,平均误差最小可达到0.901%,满足工业环境要求,能够运用于实际工作现场.

Keyword :

单目视觉 单目视觉 工业环境 工业环境 料流检测 料流检测 生产安全 生产安全 线结构光 线结构光

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 林灿辉 , 俞佳宝 , 陈锋 et al. 基于单目视觉的输送带料流体积检测方法研究 [J]. | 电视技术 , 2025 , 49 (1) : 37-41 .
MLA 林灿辉 et al. "基于单目视觉的输送带料流体积检测方法研究" . | 电视技术 49 . 1 (2025) : 37-41 .
APA 林灿辉 , 俞佳宝 , 陈锋 , 郭恩特 , 黄锦楠 , 陈晨炜 . 基于单目视觉的输送带料流体积检测方法研究 . | 电视技术 , 2025 , 49 (1) , 37-41 .
Export to NoteExpress RIS BibTex

Version :

IRBEVF-Q: Optimization of Image-Radar Fusion Algorithm Based on Bird's Eye View Features SCIE
期刊论文 | 2024 , 24 (14) | SENSORS
Abstract&Keyword Cite Version(2)

Abstract :

In autonomous driving, the fusion of multiple sensors is considered essential to improve the accuracy and safety of 3D object detection. Currently, a fusion scheme combining low-cost cameras with highly robust radars can counteract the performance degradation caused by harsh environments. In this paper, we propose the IRBEVF-Q model, which mainly consists of BEV (Bird's Eye View) fusion coding module and an object decoder module.The BEV fusion coding module solves the problem of unified representation of different modal information by fusing the image and radar features through 3D spatial reference points as a medium. The query in the object decoder, as a core component, plays an important role in detection. In this paper, Heat Map-Guided Query Initialization (HGQI) and Dynamic Position Encoding (DPE) are proposed in query construction to increase the a priori information of the query. The Auxiliary Noise Query (ANQ) then helps to stabilize the matching. The experimental results demonstrate that the proposed fusion model IRBEVF-Q achieves an NDS of 0.575 and a mAP of 0.476 on the nuScenes test set. Compared to recent state-of-the-art methods, our model shows significant advantages, thus indicating that our approach contributes to improving detection accuracy.

Keyword :

3D object detection 3D object detection attention mechanism attention mechanism multimodal fusion multimodal fusion query optimization query optimization transformer transformer

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Cai, Ganlin , Chen, Feng , Guo, Ente . IRBEVF-Q: Optimization of Image-Radar Fusion Algorithm Based on Bird's Eye View Features [J]. | SENSORS , 2024 , 24 (14) .
MLA Cai, Ganlin et al. "IRBEVF-Q: Optimization of Image-Radar Fusion Algorithm Based on Bird's Eye View Features" . | SENSORS 24 . 14 (2024) .
APA Cai, Ganlin , Chen, Feng , Guo, Ente . IRBEVF-Q: Optimization of Image-Radar Fusion Algorithm Based on Bird's Eye View Features . | SENSORS , 2024 , 24 (14) .
Export to NoteExpress RIS BibTex

Version :

IRBEVF-Q: Optimization of Image–Radar Fusion Algorithm Based on Bird’s Eye View Features EI
期刊论文 | 2024 , 24 (14) | Sensors
IRBEVF-Q: Optimization of Image–Radar Fusion Algorithm Based on Bird’s Eye View Features Scopus
期刊论文 | 2024 , 24 (14) | Sensors
基于视频语义的码率控制算法
期刊论文 | 2024 , 54 (8) , 1890-1899 | 无线电工程
Abstract&Keyword Cite Version(1)

Abstract :

随着远程监控和人工智能的融合发展,传统的码率优化算法并不适用于现阶段的移动监控网络场景.在机器视觉应用场景中,相对于传统码率优化算法只关注视频的质量,机器更关注于视频所表达的语义信息.以5G路侧摄像头远程智能检测为应用场景,提出一种基于视频语义的码率优化算法,在有限的码率传输范围内最大化目标检测准确率.具体地,该算法引入视频语义任务模型,将目标检测作为语义任务.分析目标比特与语义之间的特征关系,建立复杂度与运动区域结合的新权重来分配目标比特,使目标检测准确率达到最大化.实验结果表明,相较于HM16.23所使用的帧级树编码单元(Coding Tree Unit,CTU)层码率控制算法,所提算法不仅能够节省码率而且更符合无线远程监控的目标检测需求.在测试环境下平均提升了 1.4%的目标检测准确率,最高能够提升2.5%的目标检测准确率.

Keyword :

人工智能 人工智能 机器视觉 机器视觉 目标检测 目标检测 视频语义 视频语义

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 黄发仁 , 柯捷铭 , 郑楚飞 et al. 基于视频语义的码率控制算法 [J]. | 无线电工程 , 2024 , 54 (8) : 1890-1899 .
MLA 黄发仁 et al. "基于视频语义的码率控制算法" . | 无线电工程 54 . 8 (2024) : 1890-1899 .
APA 黄发仁 , 柯捷铭 , 郑楚飞 , 周简心 , 张森林 , 陈锋 . 基于视频语义的码率控制算法 . | 无线电工程 , 2024 , 54 (8) , 1890-1899 .
Export to NoteExpress RIS BibTex

Version :

基于视频语义的码率控制算法
期刊论文 | 2024 , 54 (08) , 1890-1899 | 无线电工程
基于目标检测的码率优化算法
期刊论文 | 2024 , 48 (04) , 20-24 | 电视技术
Abstract&Keyword Cite Version(1)

Abstract :

随着智能多媒体技术和人工智能技术的融合发展,目标检测已广泛应用于移动监控网络远程传输场景。为了提升视频的目标检测精度,提出一种针对目标检测的码率优化算法,在有限的码率范围内使得物体的检测准确率达到最大化。将目标检测作为视频语义任务,分析视频码率比特与目标检测之间的关系,建立目标比特分配模型,从而使目标检测准确率达到最大化。实验结果表明,所提算法不仅能节省视频码率,还能提升目标检测精度。

Keyword :

人工智能 人工智能 目标检测 目标检测 视频语义 视频语义

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 黄发仁 , 陈锋 , 吴宜婷 et al. 基于目标检测的码率优化算法 [J]. | 电视技术 , 2024 , 48 (04) : 20-24 .
MLA 黄发仁 et al. "基于目标检测的码率优化算法" . | 电视技术 48 . 04 (2024) : 20-24 .
APA 黄发仁 , 陈锋 , 吴宜婷 , 林灿辉 . 基于目标检测的码率优化算法 . | 电视技术 , 2024 , 48 (04) , 20-24 .
Export to NoteExpress RIS BibTex

Version :

基于目标检测的码率优化算法
期刊论文 | 2024 , 48 (4) , 20-24 | 电视技术
Multiresolution feature guidance based transformer for anomaly detection SCIE
期刊论文 | 2024 , 54 (2) , 1831-1846 | APPLIED INTELLIGENCE
WoS CC Cited Count: 2
Abstract&Keyword Cite Version(2)

Abstract :

Anomaly detection is represented as an unsupervised learning to identify deviated images from normal images. In general, there are two main challenges of anomaly detection tasks, i.e., the class imbalance and the unexpectedness of anomalies. In this paper, we propose a multiresolution feature guidance method based on Transformer named GTrans for unsupervised anomaly detection and localization. In GTrans, an Anomaly Guided Network (AGN) pre-trained on ImageNet is developed to provide surrogate labels for features and tokens. Under the tacit knowledge guidance of the AGN, the anomaly detection network named Trans utilizes Transformer to effectively establish a relationship between features with multiresolution, enhancing the ability of the Trans in fitting the normal data manifold. Due to the strong generalization ability of AGN, GTrans locates anomalies by comparing the differences in spatial distance and direction of multi-scale features extracted from the AGN and the Trans. Our experiments demonstrate that the proposed GTrans achieves state-of-the-art performance in both detection and localization on the MVTec AD dataset. GTrans achieves image-level and pixel-level anomaly detection AUROC scores of 99.0% and 97.9% on the MVTec AD dataset, respectively.

Keyword :

Anomaly detection Anomaly detection Deep learning Deep learning Knowledge distillation Knowledge distillation Transformer Transformer

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yan, Shuting , Chen, Pingping , Chen, Honghui et al. Multiresolution feature guidance based transformer for anomaly detection [J]. | APPLIED INTELLIGENCE , 2024 , 54 (2) : 1831-1846 .
MLA Yan, Shuting et al. "Multiresolution feature guidance based transformer for anomaly detection" . | APPLIED INTELLIGENCE 54 . 2 (2024) : 1831-1846 .
APA Yan, Shuting , Chen, Pingping , Chen, Honghui , Mao, Huan , Chen, Feng , Lin, Zhijian . Multiresolution feature guidance based transformer for anomaly detection . | APPLIED INTELLIGENCE , 2024 , 54 (2) , 1831-1846 .
Export to NoteExpress RIS BibTex

Version :

Multiresolution feature guidance based transformer for anomaly detection Scopus
期刊论文 | 2024 , 54 (2) , 1831-1846 | Applied Intelligence
Multiresolution feature guidance based transformer for anomaly detection EI
期刊论文 | 2024 , 54 (2) , 1831-1846 | Applied Intelligence
SCTracker: Multi-Object Tracking With Shape and Confidence Constraints SCIE
期刊论文 | 2024 , 24 (3) , 3123-3130 | IEEE SENSORS JOURNAL
Abstract&Keyword Cite Version(2)

Abstract :

Detection-based tracking is one of the main methods of multi-object tracking. It can achieve good tracking performance when using excellent detectors but it may associate wrong targets when facing overlapping and low-confidence detections. To address this issue, this article proposes a novel multi-object tracker (SCTracker) by exploiting shape constraint and confidence. In the data association stage, an intersection of union (IoU) distance with shape constraints is developed to calculate the cost matrix between tracks and detections, which can reduce the track of the wrong target with the similar position but inconsistent shape. Moreover, the detection confidence is calculated in the update stage of the Kalman filter to improve the track performance with the inaccurate detection result. Experimental results on the MOT 17 dataset show that the proposed SCTracker can improve the tracking performance of multi-object tracking when compared with the state-of-the-art methods.

Keyword :

Deep learning Deep learning distance measurement distance measurement motion estimation motion estimation object tracking object tracking

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Mao, Huan , Chen, Yulin , Li, Zongtan et al. SCTracker: Multi-Object Tracking With Shape and Confidence Constraints [J]. | IEEE SENSORS JOURNAL , 2024 , 24 (3) : 3123-3130 .
MLA Mao, Huan et al. "SCTracker: Multi-Object Tracking With Shape and Confidence Constraints" . | IEEE SENSORS JOURNAL 24 . 3 (2024) : 3123-3130 .
APA Mao, Huan , Chen, Yulin , Li, Zongtan , Chen, Pingping , Chen, Feng . SCTracker: Multi-Object Tracking With Shape and Confidence Constraints . | IEEE SENSORS JOURNAL , 2024 , 24 (3) , 3123-3130 .
Export to NoteExpress RIS BibTex

Version :

SCTracker: Multi-Object Tracking With Shape and Confidence Constraints EI
期刊论文 | 2024 , 24 (3) , 3123-3130 | IEEE Sensors Journal
SCTracker: Multi-Object Tracking With Shape and Confidence Constraints Scopus
期刊论文 | 2024 , 24 (3) , 3123-3130 | IEEE Sensors Journal
5G智能海关巡检机器人设计与开发
期刊论文 | 2024 , 48 (10) , 32-37 | 电视技术
Abstract&Keyword Cite

Abstract :

为实现对港口集装箱区域的实时监测和智能巡检,融合5G和计算机视觉技术,设计一款智能海关巡检机器人.这款巡检机器人已在福建江阴港口落地应用,显著提升了巡检效率,同时大幅推进了港口运维的智能化进程,为工作人员全面掌握港口集装箱信息、危化品区域防护设施的运行状态等提供可靠的依据.

Keyword :

5G 5G 巡检 巡检 智能机器人 智能机器人 港口 港口 计算机视觉 计算机视觉

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 张昊 , 宋菁 , 陈忠华 et al. 5G智能海关巡检机器人设计与开发 [J]. | 电视技术 , 2024 , 48 (10) : 32-37 .
MLA 张昊 et al. "5G智能海关巡检机器人设计与开发" . | 电视技术 48 . 10 (2024) : 32-37 .
APA 张昊 , 宋菁 , 陈忠华 , 陈锋 , 游索 . 5G智能海关巡检机器人设计与开发 . | 电视技术 , 2024 , 48 (10) , 32-37 .
Export to NoteExpress RIS BibTex

Version :

基于人工智能图像处理技术的散货码头皮带线智能监控系统研究
期刊论文 | 2024 , 48 (12) , 66-73 | 电视技术
Abstract&Keyword Cite

Abstract :

在散货码头中,皮带线是最重要的传送通道,其运行安全是散货码头最为重视的焦点.以福港罗源湾皮带线智能监测为目标,基于人工智能图像处理技术,深入研究该技术在皮带线皮带跑偏监测、料流大小检测、堵料识别及周界入侵预警等方面的应用算法.针对码头皮带线输送场景粉尘大、皮带线运行速度快、现场环境复杂的特点,提出一套基于传统图像处理和深度学习技术融合的皮带线智能监控系统.该系统已在福港国际(罗源湾)码头成功部署并经过验证,现场运行效果良好.

Keyword :

人工智能 人工智能 周界入侵 周界入侵 图像处理 图像处理 料流检测 料流检测 皮带跑偏 皮带跑偏

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 吴宜婷 , 陈锋 . 基于人工智能图像处理技术的散货码头皮带线智能监控系统研究 [J]. | 电视技术 , 2024 , 48 (12) : 66-73 .
MLA 吴宜婷 et al. "基于人工智能图像处理技术的散货码头皮带线智能监控系统研究" . | 电视技术 48 . 12 (2024) : 66-73 .
APA 吴宜婷 , 陈锋 . 基于人工智能图像处理技术的散货码头皮带线智能监控系统研究 . | 电视技术 , 2024 , 48 (12) , 66-73 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 7 >

Export

Results:

Selected

to

Format:
Online/Total:394/9820465
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1