Query:
学者姓名:吴升
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
[目的]城市功能区是城市规划和人类活动共同作用、相互影响的结果,其准确识别对于优化配置公共资源和高效组织商业活动具有重要意义.目前,许多研究利用新兴的社会感知大数据进行城市功能区识别,但往往未能挖掘这些数据中蕴含的深层次特征,或者未能充分捕捉和利用不同特征之间的相互关系和关联性,导致识别精度较低.[方法]针对这些问题,本研究提出了一种融合区域嵌入表示的城市功能区识别框架.该方法基于手机定位数据和兴趣点数据(Point of Interest,POI),采用Node2vec算法提取工作日与周末6个时段的区域间空间交互特征,并利用GloVe模型提取区域的语义特征.随后,通过多头注意力机制进行特征融合,并结合部分人工标注的功能区进行分类识别,在福州市三环以内地区进行了实证研究.[结果]实验结果表明,本方法生成的区域表示特征具有较高区分度,能够有效识别6类功能区,总体精度(OA)为81%,Kappa系数为0.77.[结论]与DTW_KNN和Word2Vec方法相比,精度分别提高了 30%和20%,能够充分挖掘具有全局性质的空间交互特征和语义特征.此外,消融实验进一步表明,与单一数据源或简单融合方法相比,本方法在捕捉区域内部和区域间复杂关系的同时,对重要特征赋予更高的权重,使得模型的整体OA值相较于单源数据提高了约18%和6%,相较于简单融合方法提高了约13%,尤其在住宅区和混合区的识别方面表现出了显著优势.
Keyword :
POI POI 出行有向图 出行有向图 区域嵌入表示 区域嵌入表示 城市功能区识别 城市功能区识别 多头注意力机制 多头注意力机制 手机定位数据 手机定位数据
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 韦烨娜 , 吴升 . 融合区域嵌入表示的城市功能区识别方法 [J]. | 地球信息科学学报 , 2025 , 27 (2) : 424-440 . |
MLA | 韦烨娜 等. "融合区域嵌入表示的城市功能区识别方法" . | 地球信息科学学报 27 . 2 (2025) : 424-440 . |
APA | 韦烨娜 , 吴升 . 融合区域嵌入表示的城市功能区识别方法 . | 地球信息科学学报 , 2025 , 27 (2) , 424-440 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
[目的]关键路段的准确识别对于全路网的交通管理具有重要意义.目前对于关键路段的识别已取得了丰富的成果,但在大规模路网(如城市级别)中,现有方法往往无法识别出交通流量较小的局部区域内的相对关键路段.[方法]为弥补上述不足,本研究提出了一种基于路段动静态嵌入的两阶段特征学习方法来识别大规模路网中的关键路段.具体步骤如下:首先,使用手机定位数据提取出行路线并构建交通语料库.接着,进行两阶段特征学习:① 提取各路段静态嵌入并聚类,得到初始聚类中心;② 提取各路段动态嵌入矩阵并进行注意力池化,再对池化后得到的特征向量进行可微分聚类,并计算相关损失函数.当损失值收敛后,得到各路段融合特征,对其进一步聚类得到的聚类中心即为关键路段.[结果]最后,使用福州市三环内区域的手机定位数据构建交通语料库,并以该区域内路网为例,进行关键路段的识别实验和对比分析.结果表明本文方法能有效识别出大规模路网中的关键路段,且能识别出局部区域中的相对关键路段.[结论]同时,本文方法相较于其他方法在各评价指标上的整体表现更佳,说明其识别的关键路段更为合理.
Keyword :
交通语料库 交通语料库 关键路段识别 关键路段识别 可微分聚类 可微分聚类 手机定位数据 手机定位数据 注意力池化 注意力池化 福州市 福州市
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 吴炜毅 , 吴升 . 基于路段动静态嵌入两阶段特征学习的关键路段识别方法 [J]. | 地球信息科学学报 , 2025 , 27 (1) : 167-180 . |
MLA | 吴炜毅 等. "基于路段动静态嵌入两阶段特征学习的关键路段识别方法" . | 地球信息科学学报 27 . 1 (2025) : 167-180 . |
APA | 吴炜毅 , 吴升 . 基于路段动静态嵌入两阶段特征学习的关键路段识别方法 . | 地球信息科学学报 , 2025 , 27 (1) , 167-180 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The accurate extraction of agricultural parcels from remote sensing images is crucial for advanced agricultural management and monitoring systems. Existing methods primarily emphasize regional accuracy over boundary quality, often resulting in fragmented outputs due to uniform crop types, diverse agricultural practices, and environmental variations. To address these issues, this paper proposes DSTBA-Net, an end-to-end encoder-decoder architecture. Initially, we introduce a Dual-Stream Feature Extraction (DSFE) mechanism within the encoder, which consists of Residual Blocks and Boundary Feature Guidance (BFG) to separately process image and boundary data. The extracted features are then fused in the Global Feature Fusion Module (GFFM), utilizing Transformer technology to further integrate global and detailed information. In the decoder, we employ Feature Compensation Recovery (FCR) to restore critical information lost during the encoding process. Additionally, the network is optimized using a boundary-aware weighted loss strategy. DSTBA-Net aims to achieve high precision in agricultural parcel segmentation and accurate boundary extraction. To evaluate the model's effectiveness, we conducted experiments on agricultural parcel extraction in Denmark (Europe) and Shandong (Asia). Both quantitative and qualitative analyses show that DSTBA-Net outperforms comparative methods, offering significant advantages in agricultural parcel extraction.
Keyword :
agricultural parcel extraction agricultural parcel extraction boundary-aware weighted loss boundary-aware weighted loss dual-stream feature extraction (DSFE) dual-stream feature extraction (DSFE) feature compensation restoration (FCR) feature compensation restoration (FCR) global feature fusion module (GFFM) global feature fusion module (GFFM)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xu, Weiming , Wang, Juan , Wang, Chengjun et al. Utilizing Dual-Stream Encoding and Transformer for Boundary-Aware Agricultural Parcel Extraction in Remote Sensing Images [J]. | REMOTE SENSING , 2024 , 16 (14) . |
MLA | Xu, Weiming et al. "Utilizing Dual-Stream Encoding and Transformer for Boundary-Aware Agricultural Parcel Extraction in Remote Sensing Images" . | REMOTE SENSING 16 . 14 (2024) . |
APA | Xu, Weiming , Wang, Juan , Wang, Chengjun , Li, Ziwei , Zhang, Jianchang , Su, Hua et al. Utilizing Dual-Stream Encoding and Transformer for Boundary-Aware Agricultural Parcel Extraction in Remote Sensing Images . | REMOTE SENSING , 2024 , 16 (14) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
建立了采摘机器人运动学模型,并设计了基于深度神经网络和大数据技术的多元信息融合模型,实现了对采摘机器人的定位和轨迹预测。仿真结果表明:模型对采摘机器人的预测精度较高,误差在允许的范围内,对采摘机器人定位和轨迹预测具有一定参考意义。
Keyword :
信息融合 信息融合 大数据 大数据 定位 定位 神经网络 神经网络 轨迹预测 轨迹预测 采摘机器人 采摘机器人
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 聂恒志 , 吴升 , 张璐 . 采摘机器人的定位和轨迹预测算法研究——基于大数据技术 [J]. | 农机化研究 , 2024 , 46 (04) : 53-57 . |
MLA | 聂恒志 et al. "采摘机器人的定位和轨迹预测算法研究——基于大数据技术" . | 农机化研究 46 . 04 (2024) : 53-57 . |
APA | 聂恒志 , 吴升 , 张璐 . 采摘机器人的定位和轨迹预测算法研究——基于大数据技术 . | 农机化研究 , 2024 , 46 (04) , 53-57 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
面向美丽中国生态文明建设所需,亟待有效实现流域精细治理的科学决策,以根据流域综合治理愿景目标,优化流域管理措施(BMP)的空间布局方案(即BMP情景)、制定符合实际需求的实施路线图。对此,“流域系统模拟—情景优化”方法框架近年展现出广阔应用前景。本文介绍了该框架在应对实际应用需求中尚存的一系列问题,开展了体系性的方法研究:(1)提出新的流域过程建模框架,以兼顾建模灵活性和高性能计算、高效实现流域系统模拟;(2)提出以坡位单元作为BMP空间配置单元、并在情景优化过程中可进行单元边界动态调整的BMP情景优化方法,可有效考虑流域综合治理的经验知识,保障优化结果合理性;(3)提出考虑分阶段投资约束的BMP情景实施次序优化方法,可推荐出符合实际落地需求的实施路线图;(4)设计研发用户友好的参与式流域规划系统,供各方利益相关者协商决策。通过典型小流域应用案例验证了上述新方法、工具和原型系统的有效性和实用价值。
Keyword :
决策支持 决策支持 情景分析 情景分析 智能优化 智能优化 流域管理措施 流域管理措施 流域系统模拟 流域系统模拟
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 秦承志 , 朱良君 , 申申 et al. 基于流域系统模拟一情景优化的精细治理决策支持方法 [J]. | 地理学报 , 2024 , 79 (01) : 58-75 . |
MLA | 秦承志 et al. "基于流域系统模拟一情景优化的精细治理决策支持方法" . | 地理学报 79 . 01 (2024) : 58-75 . |
APA | 秦承志 , 朱良君 , 申申 , 吴彤 , 肖桂荣 , 吴升 et al. 基于流域系统模拟一情景优化的精细治理决策支持方法 . | 地理学报 , 2024 , 79 (01) , 58-75 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Travel mode recognition is a key issue in urban planning and transportation research. While traditional travel surveys use manual data collection and have limited coverage, poor timeliness, and insufficient sample capacity, recent advancements in Global Positioning System (GPS) technology allow large-scale data collection and offer novel opportunities to enhance travel mode recognition. However, existing studies often neglect regular differences and changes in motion states across different travel modes and fail to fully integrate multi-scale spatio-temporal features, which limits the accurate classification of travel modes. To fill this gap, this study proposes a multi-scale spatio-temporal attribute fusion (MSAF) model for precise travel mode identification using solely GPS trajectories without altering their sampling rate. The MSAF model segments GPS trajectories into various temporal and spatial scales, extracting local motion states and spatial features at multiple scales. The spatio-temporal feature extraction module is constructed to extract local motion states and capture spatio-temporal dependencies. Additionally, the model incorporates a multi-scale feature fusion module, which effectively combines features of various scales through a series of fusion techniques to obtain a comprehensive representation, enabling automatic and accurate travel mode identification. Experiments on real-world datasets, including the GeoLife Trajectories dataset and the Sussex-Huawei Locomotion-Transportation (SHL) dataset, demonstrate the effectiveness of the MSAF model, achieving a competitive accuracy of 95.16% and 91.70%. This represents an improvement of 2.50% to 7.95% and 0.8% to 6.62% over several state-of-the-art baselines, effectively addressing sample imbalance challenges. Moreover, the experiments demonstrate the significant role of multiscale feature fusion in improving model performance.
Keyword :
GPS trajectory GPS trajectory multi-scale attributes multi-scale attributes spatio-temporal convolution spatio-temporal convolution trajectory segmentation trajectory segmentation travel mode identification travel mode identification
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Fan, Kunkun , Li, Daichao , Jin, Xinlei et al. A multi-scale attributes fusion model for travel mode identification using GPS trajectories [J]. | GEO-SPATIAL INFORMATION SCIENCE , 2024 . |
MLA | Fan, Kunkun et al. "A multi-scale attributes fusion model for travel mode identification using GPS trajectories" . | GEO-SPATIAL INFORMATION SCIENCE (2024) . |
APA | Fan, Kunkun , Li, Daichao , Jin, Xinlei , Wu, Sheng . A multi-scale attributes fusion model for travel mode identification using GPS trajectories . | GEO-SPATIAL INFORMATION SCIENCE , 2024 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The construction of China's ecological civilization, known as 'Beautiful China', necessitates implementing precision watershed management through scientifically informed decision-making. This entails optimizing the spatial distribution of watershed best management practices (the so- called BMP scenario) and proposing multistage implementation plans, or roadmaps that align with practical requirements based on the overarching vision of comprehensive water shed management.The'water shed system simulation-scenariooptimization' method frame work (the simulation-and-optimization-based frame work for short) has demonstrated considerable potential in recent years. To address challenges arising from practical applications of this framework, this study systematically conducted the methodological research: (1) proposing a novel watershed process modeling framework that strikes a balance between modeling flexibility and high-performance computing to model and simulate watershed systems efficiently; (2) introducing slope position units as BMP configuration units and enabling dynamic boundary adjustments during scenario optimization, effectively incorporating practical knowledge of watershed management to ensure reasonable outcomes; (3) presenting an optimization method for determining the implementation orders of BMPs that considers stepwise investment constraints, thereby recommending feasible roadmaps that meet practical needs; and (4) designing a user-friendly participatory watershed planning system to facilitate collaborative decision-making among stakeholders. The effectiveness and practical value of these new methods, tools, and prototype systems are validated through application cases in a representative small watershed. This research contributes to advancing precision watershed management and provides valuable insights for sustainable ecological conservation. The methods proposed within the simulation-and-optimization-based framework in this study are universal methods, which means their application does not depend on the specific implementation, such as the watershed process model, the BMP types considered, the designed BMP configuration strategy, and so on. Further studies should be conducted not only to deepen related theory and method research but also to strengthen promotion and application, especially cooperating with local watershed management agents to provide valuable insights for their sustainable ecological conservation. © 2024 Science Press. All rights reserved.
Keyword :
Computation theory Computation theory Decision making Decision making Decision support systems Decision support systems Ecology Ecology Investments Investments Soil conservation Soil conservation Water conservation Water conservation Water management Water management Watersheds Watersheds
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Qin, Chengzhi , Zhu, Liangjun , Shen, Shen et al. Methods for supporting decision-making of precision watershed management based on watershed system simulation and scenario optimization [J]. | Acta Geographica Sinica , 2024 , 79 (1) : 58-75 . |
MLA | Qin, Chengzhi et al. "Methods for supporting decision-making of precision watershed management based on watershed system simulation and scenario optimization" . | Acta Geographica Sinica 79 . 1 (2024) : 58-75 . |
APA | Qin, Chengzhi , Zhu, Liangjun , Shen, Shen , Wu, Tong , Xiao, Guirong , Wu, Sheng et al. Methods for supporting decision-making of precision watershed management based on watershed system simulation and scenario optimization . | Acta Geographica Sinica , 2024 , 79 (1) , 58-75 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
“乒乓效应”是手机位置数据中一种典型的噪声数据,分析其时空分布特征对科学应对噪音数据影响、准确理解分析结果、提高手机位置数据质量具有重要意义。本研究基于速度阈值、重复跳转和频繁大幅度转向3种模式的“乒乓效应”检测方法,采用3个不同研究区(上海、西宁和深圳)的手机位置数据,构建了时间与空间易发指数,对手机数据中的“乒乓效应”进行识别,并从跳转距离特征、空间分布特征、时间分布特征3个方面进行了对比分析。结果表明:空间分布上,“乒乓效应”总体呈现出较高的空间自相关现象,表现为远郊区易发、基站密度高处不易发的特点;在时间分布特征上,呈现出白天易发、夜晚不易发的特点;同时“乒乓效应”的存在会对研究结果产生一定程度的影响。
Keyword :
“乒乓效应” “乒乓效应” 手机位置数据 手机位置数据 数据质量 数据质量 时空数据挖掘 时空数据挖掘
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 赵志远 , 张雯婷 , 杨喜平 et al. 手机位置数据中“乒乓效应”的时空特征研究 [J]. | 测绘与空间地理信息 , 2024 , 47 (03) : 12-17 . |
MLA | 赵志远 et al. "手机位置数据中“乒乓效应”的时空特征研究" . | 测绘与空间地理信息 47 . 03 (2024) : 12-17 . |
APA | 赵志远 , 张雯婷 , 杨喜平 , 吴升 . 手机位置数据中“乒乓效应”的时空特征研究 . | 测绘与空间地理信息 , 2024 , 47 (03) , 12-17 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
建立了采摘机器人运动学模型,并设计了基于深度神经网络和大数据技术的多元信息融合模型,实现了对采摘机器人的定位和轨迹预测.仿真结果表明:模型对采摘机器人的预测精度较高,误差在允许的范围内,对采摘机器人定位和轨迹预测具有一定参考意义.
Keyword :
信息融合 信息融合 大数据 大数据 定位 定位 神经网络 神经网络 轨迹预测 轨迹预测 采摘机器人 采摘机器人
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 聂恒志 , 吴升 , 张璐 . 采摘机器人的定位和轨迹预测算法研究 [J]. | 农机化研究 , 2024 , 46 (4) : 53-57 . |
MLA | 聂恒志 et al. "采摘机器人的定位和轨迹预测算法研究" . | 农机化研究 46 . 4 (2024) : 53-57 . |
APA | 聂恒志 , 吴升 , 张璐 . 采摘机器人的定位和轨迹预测算法研究 . | 农机化研究 , 2024 , 46 (4) , 53-57 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
This paper proposes a novel model for named entity recognition of Chinese crop diseases and pests. The model is intended to solve the problems of uneven entity distribution, incomplete recognition of complex terms, and unclear entity boundaries. First, a robustly optimized BERT pre-training approach-whole word masking (RoBERTa-wwm) model is used to extract diseases and pests' text semantics, acquiring dynamic word vectors to solve the problem of incomplete word recognition. Adversarial training is then introduced to address unclear boundaries of diseases and pest entities and to improve the generalization ability of models in an effective manner. The context features are obtained by the bi-directional gated recurrent unit (BiGRU) neural network. Finally, the optimal tag sequence is obtained by conditional random fields (CRF) decoding. A focal loss function is introduced to optimize conditional random fields (CRF) and thus solve the problem of unbalanced label classification in the sequence. The experimental results show that the model's precision, recall, and F1 values on the crop diseases and pests corpus reached 89.23%, 90.90%, and 90.04%, respectively, demonstrating effectiveness at improving the accuracy of named entity recognition for Chinese crop diseases and pests. The named entity recognition model proposed in this study can provide a high-quality technical basis for downstream tasks such as crop diseases and pests knowledge graphs and question-answering systems.
Keyword :
adversarial training adversarial training crop diseases and pests crop diseases and pests deep learning deep learning named entity recognition named entity recognition pre-training language model pre-training language model
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Liang, Jianqin , Li, Daichao , Lin, Yiting et al. Named Entity Recognition of Chinese Crop Diseases and Pests Based on RoBERTa-wwm with Adversarial Training [J]. | AGRONOMY-BASEL , 2023 , 13 (3) . |
MLA | Liang, Jianqin et al. "Named Entity Recognition of Chinese Crop Diseases and Pests Based on RoBERTa-wwm with Adversarial Training" . | AGRONOMY-BASEL 13 . 3 (2023) . |
APA | Liang, Jianqin , Li, Daichao , Lin, Yiting , Wu, Sheng , Huang, Zongcai . Named Entity Recognition of Chinese Crop Diseases and Pests Based on RoBERTa-wwm with Adversarial Training . | AGRONOMY-BASEL , 2023 , 13 (3) . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |