Query:
学者姓名:陈楠
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
Genetic landform recognition is critical for understanding the composition of the Earth surface and its dynamic processes. The graph-driven approach is a significant paradigm in data-driven Earth science, whereas never been reported in landform recognition. The construction of a meaningful graph structure for simulating entire landforms and the developed landform recognition framework based on it are two major challenges. In this context, we first develop a novel graph-driven deep learning (DL) method for genetic landform recognition. Specifically, inspired by the positive negative terrain concept in Earth science, we introduced a terrain structure-based directed graph model (DPN) to model overall landforms as graph data with geo-meaning. We then develop a graph DL technique flow based on a graph attention network (GAT) to leverage DPN to achieve graph-driven landform recognition. We construct a multi-scale landform genesis dataset with seven genesis landforms and 756 000 samples. Based on this dataset and four test regions in China, a series of carefully designed experiments demonstrate that the proposed method is accurate, transferable, and scalable in genetic landform recognition. As a corollary, this reveals that the overall terrain structure is closely related to the genesis of the landforms. The proposed graph-driven method shows superior or comparable performance compared to different image-driven methods with an overall accuracy of 91.67%. This is one of the first extensions of graph-driven methods to landform recognition with pioneer results. Besides, the strategy of using DPN to simulate overall landform outperforms any regional terrain element-based strategy in terms of recognition performance, which confirms the importance of the proposed terrain structure modeling technique. Our study highlights that the conflation of physical geomorphic models and new AI techniques presents a highly promising avenue for geographical inquiry.
Keyword :
Deep learning (DL) Deep learning (DL) graph attention network (GAT) graph attention network (GAT) landform recognition landform recognition remote sensing remote sensing terrain modeling terrain modeling
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Siwei , Wang, Xianyan , Chen, Nan et al. Directed Positive Negative Terrain Structure Graph Attention Network for Genetic Landform Recognition [J]. | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING , 2024 , 62 . |
MLA | Lin, Siwei et al. "Directed Positive Negative Terrain Structure Graph Attention Network for Genetic Landform Recognition" . | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62 (2024) . |
APA | Lin, Siwei , Wang, Xianyan , Chen, Nan , Shen, Rui . Directed Positive Negative Terrain Structure Graph Attention Network for Genetic Landform Recognition . | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING , 2024 , 62 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
采用光线追踪算法模拟起伏地形下的可照时间时,随着对地形遮蔽状况进行搜索的半径不同将直接影响到可照时间计算的准确性与高效性.本研究基于DEM数据,针对水星独特的轨道运动特征,太阳高度角随水星运动变化缓慢的特点,研究了水星2种典型地貌下不同太阳高度角的搜索半径和基于搜索半径的平均可照时间变化状况.同时构建了以5种影响搜索半径与可照时间的因子作为输入变量,分别以搜索半径与平均可照时间作为输出变量的BP神经网络.模型通过了检验,5种影响因子与搜索半径影响的显著性由高到低:太阳高度角>高程标准差>地形开阔度平均值>地形起伏度>地表粗糙度平均值;与平均可照时间影响的显著性由高到低:太阳高度角>高程标准差>地表粗糙度平均值>地形开阔度平均值>地形起伏度.该模型可为计算水星最搜索半径以及可照时间提供参考.
Keyword :
BP神经网络 BP神经网络 DEM DEM 可照时长 可照时长 太阳高度角 太阳高度角 搜索半径 搜索半径 水星 水星
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 范玉贵 , 陈楠 , 林偲蔚 . 水星可照时间与搜索半径影响因素研究 [J]. | 海南大学学报(自然科学版) , 2024 , 42 (01) : 67-77 . |
MLA | 范玉贵 et al. "水星可照时间与搜索半径影响因素研究" . | 海南大学学报(自然科学版) 42 . 01 (2024) : 67-77 . |
APA | 范玉贵 , 陈楠 , 林偲蔚 . 水星可照时间与搜索半径影响因素研究 . | 海南大学学报(自然科学版) , 2024 , 42 (01) , 67-77 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
基于九期人工降雨模拟流域DEM数据,运用MATLAB进行了演化条件中的流域天文辐射计算,并模拟了流域内各阶段年天文辐射量空间分布.采用统计学中均值、变异系数、峰度及偏度量化了天文辐射的数量特征,运用景观生态学指标量化了其空间结构特征.结果表明:流域演化各阶段年天文辐射的数值变化在2~12 596 MJ∙m-2之间.辐射量景观格局的变化特征方面得出:斑块层次上各景观指数在小流域不同演化阶段的变化规律基本一致,而景观层次上的各指数则呈现波动性变化特征.此外,活跃演化阶段(实验阶段Ⅳ~Ⅵ)天文辐射量的数量特征及空间结构特征的变化程度最为明显.
Keyword :
天文辐射 天文辐射 数字高程模型 数字高程模型 景观指数 景观指数 演化条件 演化条件 空间分布 空间分布
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 万佳旭 , 陈楠 . 流域演化过程中天文辐射空间分布 [J]. | 海南大学学报(自然科学版) , 2024 , 42 (3) : 268-277 . |
MLA | 万佳旭 et al. "流域演化过程中天文辐射空间分布" . | 海南大学学报(自然科学版) 42 . 3 (2024) : 268-277 . |
APA | 万佳旭 , 陈楠 . 流域演化过程中天文辐射空间分布 . | 海南大学学报(自然科学版) , 2024 , 42 (3) , 268-277 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
以球状星团NGC (New General Catalogue) 104、NGC 5139、NGC 6121为实验样区,选取了视差等10个恒星参数,通过引入地学中的空间分析理论和相应的分析框架为定量描述球状星团成员星的空间分布特征提出了一种基于地学的研究范式.通过计算全局和局部莫兰(Moran)指数得到球状星团成员星各恒星参数的空间分布特征.研究结果表明:球状星团NGC 104、NGC 5139、NGC 6121成员星的各恒星参数在总体上呈现出空间正相关特性,表现出空间集聚特征,但不同恒星参数之间存在差异;局部空间分布也呈现聚集特征,而不同的成员星呈现出不同的空间分布特性和趋势.总体而言,用地学空间相关分析系统地定量化描述球状星团成员星空间分布特征,能够为球状星团的研究提供新的思路.
Keyword :
NGC 5139 NGC 5139 NGC 6121 NGC 6121 方法:空间自相关 方法:空间自相关 球状星团:个别:NGC 104 球状星团:个别:NGC 104
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 林伟斌 , 陈楠 , 林偲蔚 . 球状星团成员星的空间相关性分析 [J]. | 天文学报 , 2024 , 65 (01) : 11-20 . |
MLA | 林伟斌 et al. "球状星团成员星的空间相关性分析" . | 天文学报 65 . 01 (2024) : 11-20 . |
APA | 林伟斌 , 陈楠 , 林偲蔚 . 球状星团成员星的空间相关性分析 . | 天文学报 , 2024 , 65 (01) , 11-20 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Music has long served as a bridge between science and nature, allowing for the artistic expression of natural and human-made phenomena. While music has been used in geomorphology as an engaging teaching strategy, its application in specific scientific inquiries within geomorphology remains relatively unexplored. Drawing on the morphological similarities between music and terrain relief, this work introduced a novel music-based method for modelling and expressing terrain relief based on the drainage basin profile (DBP). It converts terrain relief into pitches and time values according to mapping rules and then describes terrain relief in an audible form. Based on 5 sample areas and 360 drainage basins on the Loess Plateau, we developed the application of the proposed method on four core geomorphic tasks, including landform interpretation, analysis, recognition and classification. Experimental results show that (1) terrain music can interpret the terrain relief and landform evolution processes through its musical structure and rhythmic variations; (2) music derivatives are related to different terrain features, such as terrain relief, terrain variation intensity, landform evolution degree and terrain complexity, and have a well-functioning relationship with a series of conventional terrain derivatives; (3) leveraging machine learning techniques, the terrain music method is effective for landform recognition, achieving an overall accuracy of 88.85% and a mean accuracy of 88.85%; and (4) via a case study in Northern Shaanxi, music modelling successfully divided it into 12 distinct landform regions and 8 landform types. Different landform regions exhibit clear regional boundaries and gradual transition zones, while specific landform regions share prominent terrain, spatial clustering and landform processes. Our delineation provides reasonable and effective landform differentiation but captures additional bed-rock mountain features compared with a traditional method. This study highlights that music is not only an artistic expression but also a valuable research paradigm for a wide range of geomorphic tasks, offering fresh perspectives and enhancing our understanding of loess landforms. The results show a promising effort to integrate music theory into practical geomorphic tasks, demonstrating the potential of using music as a medium for conveying and analysing spatial information in geomorphology. This study presents a novel music modelling method for terrains, encompassing extraction techniques, quantitative indices and specific applications in geomorphology. By utilizing DBP as a key starting point for investigation, a series of experiments were conducted to demonstrate the feasibility and potential of the proposed method in landform quantitative analysis. By adopting music theory in various geomorphic tasks, this study aims to assess the potential of the approach and uncover new implications for geomorphic study from an auditory perspective. image
Keyword :
drainage basin profile drainage basin profile geomorphology geomorphology music modelling music modelling terrain terrain
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Siwei , Yu, Yang , Chen, Nan et al. Using music and music-based analysis to model and to classify terrain in geomorphology [J]. | EARTH SURFACE PROCESSES AND LANDFORMS , 2024 , 49 (5) : 1544-1559 . |
MLA | Lin, Siwei et al. "Using music and music-based analysis to model and to classify terrain in geomorphology" . | EARTH SURFACE PROCESSES AND LANDFORMS 49 . 5 (2024) : 1544-1559 . |
APA | Lin, Siwei , Yu, Yang , Chen, Nan , Shen, Rui , Wang, Xianyan . Using music and music-based analysis to model and to classify terrain in geomorphology . | EARTH SURFACE PROCESSES AND LANDFORMS , 2024 , 49 (5) , 1544-1559 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The amount of actively cultivated land in China is increasingly threatened by rapid urbanization and rural population aging. Quantifying the extent and changes of active cropland and cropping intensity is crucial to global food security. However, national-scale datasets for smallholder agriculture are limited in spatiotemporal continuity, resolution, and precision. In this paper, we present updated annual Cropland Use Intensity maps in China (China-CUI10m) with descriptions of the extent of fallow/abandoned, actively cropped fields and cropping intensity at a 10-m resolution in recent six years (2018-2023). The dataset is produced by robust algorithms with no requirements for regional adjustments or intensive training samples, which take full advantage of the Sentinel-1 (S1) SAR and Sentinel-2 (S2) MSI time series. The China-CUI10m maps have achieved high accuracy when compared to ground truth data (Overall accuracy = 90.88%) and statistical data (R-2 > 0.94). This paper provides the recent trends in cropland abandonment and agricultural intensification in China, which contributes to facilitating geographic-targeted cropland use control policies towards sustainable intensification of smallholder agricultural systems in developing countries.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Qiu, Bingwen , Liu, Baoli , Tang, Zhenghong et al. National-scale 10-m maps of cropland use intensity in China during 2018-2023 [J]. | SCIENTIFIC DATA , 2024 , 11 (1) . |
MLA | Qiu, Bingwen et al. "National-scale 10-m maps of cropland use intensity in China during 2018-2023" . | SCIENTIFIC DATA 11 . 1 (2024) . |
APA | Qiu, Bingwen , Liu, Baoli , Tang, Zhenghong , Dong, Jinwei , Xu, Weiming , Liang, Juanzhu et al. National-scale 10-m maps of cropland use intensity in China during 2018-2023 . | SCIENTIFIC DATA , 2024 , 11 (1) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
植被吸收光合有效辐射(Absorbed Photosynthetically Active Radiation, APAR)是植被进行光合作用中实际吸收的太阳辐射量,是植被净第一性生产力的重要指标,也是生态系统的功能模型、作物生长模型、净初级生产力模型、气候模型等的重要参数。因此高空间分辨率和精确性的植被吸收光合有效辐射对于高精度的区域生产力及光能利用率的研究具有重要意义。对CASA(Carnegie-Ames-Stanford Approach)模型进行了改进,利用30m×30m的数字高程模型(Digital Elevation Model, DEM)数据直接计算太阳辐射,从而将其作为CASA模型的输入参数。结合多源遥感数据、气象数据,研究2015—2020年江汉平原APAR的时空分布及其影响因素。顾及江汉平原的土地利用分布特点,着重分析了江汉平原农田APAR的时空特性,研究结果较好的反映了江汉平原APAR分布。实验结果表明:(1)2015—2020年APAR年总值在3.42×1013MJ—3.73×1013MJ之间,总体空间分布与植被类型的分布情况相符;(2)农田月均APAR值在4月、7月高于其他月份,表现出“双峰”的特征;(3)在空间分布上,水田APAR表现出明显的纬度地带性,而旱地APAR正好相反,这可能源于种植结构重心转移;(4)通过借助地理探测器,着重考虑与植被生长相关的12个因子(包括≧10℃积温、年总日照时数、年均气温、年总降雨量、农田种植结构、年散射辐射、农田施肥、土壤类型、土壤质地(砂土、粉砂土、黏土))进行分析,结果表明这12个因素对APAR空间变异性都具有很明显的影响。对CASA的改进方法可以适用于大范围高空间精度的计算。
Keyword :
CASA模型 CASA模型 光合有效辐射 光合有效辐射 地理探测器 地理探测器 数字高程模型 数字高程模型 植被吸收光合有效辐射 植被吸收光合有效辐射
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 林婷敏 , 陈楠 , 林偲蔚 . 2015—2020年植被吸收光合有效辐射的时空特征及影响因素分析 [J]. | 生态科学 , 2024 , 43 (02) : 211-222 . |
MLA | 林婷敏 et al. "2015—2020年植被吸收光合有效辐射的时空特征及影响因素分析" . | 生态科学 43 . 02 (2024) : 211-222 . |
APA | 林婷敏 , 陈楠 , 林偲蔚 . 2015—2020年植被吸收光合有效辐射的时空特征及影响因素分析 . | 生态科学 , 2024 , 43 (02) , 211-222 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The current research focus on visualizing terrain features emphasizes quantification and detailed simulation, without adequately considering the impact of spatial-temporal variations in the terrain on human cognition. However, advancements in visualization technology, such as efficient and rapid construction of large-scale three-dimensional (3D) terrain scenes, real-time dynamic display, and free-roaming from any viewpoint, currently provide ample technical support for visualizing spatial-temporal information. Therefore, this article proposes a 3D terrain viewing model that considers the spatial-temporal changes in light intensity and incident direction in a terrain scene, based on the principles of radiometry and computer graphics theory and supported by the physically based rendering techniques. This model aims to accurately represent the subtle variations in real-world terrain surfaces and highlight the key elements of hill terrain. Theoretically, this model provides a foundation for the virtual reconstruction of real-world terrain.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Song, Ci , Chen, Nan , Xu, YueXue et al. Field-of-view modeling of hilly terrain based on physically based rendering of spatial-temporal variations within optical radiation [J]. | TRANSACTIONS IN GIS , 2024 . |
MLA | Song, Ci et al. "Field-of-view modeling of hilly terrain based on physically based rendering of spatial-temporal variations within optical radiation" . | TRANSACTIONS IN GIS (2024) . |
APA | Song, Ci , Chen, Nan , Xu, YueXue , Zhang, YiNing , Zhu, HongChun . Field-of-view modeling of hilly terrain based on physically based rendering of spatial-temporal variations within optical radiation . | TRANSACTIONS IN GIS , 2024 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
天文辐射指不考虑大气影响,落于地表的太阳辐射类型,亦是太阳能资源评估的重要背景。火星天文辐射及其时空分布特征的研究会为未来火星的探索提供助力,为火星太阳能资源的精细化利用和高效开发以及政府的科学决策提供基础数据。火星地形地貌错综复杂,其规模形态地球难以比拟,故而无法忽略地形对火星地表天文辐射的影响效果。然而,当下对火星天文辐射的计算和研究并未考虑火星实际地表的遮蔽效应且往往是从局部区域进行的研究。本文考虑纬度差异、时序更替的综合影响,以分辨率200 m的数字高程模型作为基本数据,提出了基于DEM计算火星天文辐射的理论模型,利用Hadoop分布式集群提供的并行计算框架以10 min为一个时间单位精细模拟了考虑地形遮蔽影响的火星全球地表天文辐射空间分布。Rb为水平面天文辐射与考虑地形遮蔽因素的天文辐射之比,一般用于评估天文辐射的地形遮蔽程度。基于全球不同纬度使用Rb进行时空分析,通过有交互的双因素方差分析、因子分析、相关性分析探寻地形因子及天文因素对阴坡和阳坡Rb值的影响程度。结果表明:地形对火星全球地表天文辐射的影响效果在时空尺度上具有明显的规律性,其影响程度不仅与地形自身发展情况(包括地形起伏,坡向,纬度等)有关,还深受正午太阳高度角等天文因素的综合影响。
Keyword :
地形遮蔽效应 地形遮蔽效应 天文因素 天文因素 天文辐射 天文辐射 数字高程模型 数字高程模型 火星 火星
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 涂平 , 林偲蔚 , 周千千 et al. 顾及地形影响的火星地表天文辐射时空特征分析 [J]. | 地球信息科学学报 , 2023 , 25 (08) : 1611-1624 . |
MLA | 涂平 et al. "顾及地形影响的火星地表天文辐射时空特征分析" . | 地球信息科学学报 25 . 08 (2023) : 1611-1624 . |
APA | 涂平 , 林偲蔚 , 周千千 , 谢静 , 范玉贵 , 陈楠 et al. 顾及地形影响的火星地表天文辐射时空特征分析 . | 地球信息科学学报 , 2023 , 25 (08) , 1611-1624 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
地形音乐,是以地形特征线为研究对象,用可听化形式描述地形起伏形态。本文以地形音乐为切入点,实现对流域地形特征线形态的建模及量化表达,从而探讨了黄土高原地形空间分异特征及规律。基于30 m分辨率的DEM数据,本文选取了均匀分布在陕北黄土高原的53个典型流域为测试样区,综合乐理知识、数字地形分析以及地统计学理论,以流域边界剖面线为切入点,实现对地表形态的数字化表达;运用克里金插值法构建地形音乐指标的空间分异图,从而进一步分析地形的空间分布格局和特征。在此基础上,进一步探讨了陕北黄土高原的地形音乐指标的空间分布以及与传统指标进行对比分析。研究结果表明地形音乐指标能够从多角度定量描述和揭示地形的空间分布特征:(1)跳进指标与地形起伏度相关系数为-0.486,从地势起伏程度定量描述和揭示地形的空间分布特征;(2)级进指标与坡度相关系数为-0.328,从地形倾斜程度定量描述和揭示地形的空间分布特征;(3)模进指标与剖面曲率相关系数为-0.309,从地形变化程度定量描述和揭示地形的空间分布特征。本文拓展了数字地形分析的研究范围,促进了乐理理论与地貌学研究的结合,揭示出地形音乐相关研究方法的方法在地貌学领域的应用范畴区别于传统方法,以新视角审视黄土高原的地形空间分异特征和内在机理,从可听化角度加深了对黄土高原地形空间分异发育过程和内在机理的认识。
Keyword :
DEM DEM 克里金插值 克里金插值 地形特征 地形特征 地形音乐 地形音乐 地貌空间分异 地貌空间分异 数字地形分析 数字地形分析 水文分析 水文分析
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 谢静 , 陈楠 , 林偲蔚 . 基于地形音乐的地形定量分析与空间分异研究——以陕北黄土高原为例 [J]. | 地球信息科学学报 , 2023 , 25 (05) : 924-934 . |
MLA | 谢静 et al. "基于地形音乐的地形定量分析与空间分异研究——以陕北黄土高原为例" . | 地球信息科学学报 25 . 05 (2023) : 924-934 . |
APA | 谢静 , 陈楠 , 林偲蔚 . 基于地形音乐的地形定量分析与空间分异研究——以陕北黄土高原为例 . | 地球信息科学学报 , 2023 , 25 (05) , 924-934 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |