Query:
所有字段:(空)
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
Recycled coarse-aggregate (RCA) derived from waste concrete can be re-used for concrete preparation, which is now limited due to its drawbacks such as micro-cracks, high-porosity, and reduced concrete strengths. To remedy these deficiencies, carbon-sequestration was employed to enhance RCA and the conditions were optimized, including the temperature (20 °C–40 °C), pressure (0.1 MPa–0.3 MPa), time (5 h–24 h) and initial water content (25%–75 %). There parameters were optimized based on the orthogonal test with scheme L9(34), which was evaluated based on RCA carbon-sequestration amount as well as its properties. With the optimized parameters, RCA was enhanced as CRCA. Both RCA and CRCA were utilized to fully replace natural coarse-aggregate (NCA) in concrete and concrete basic performances were investigated systematically, including strengths, shrinkage and medium transport properties. The results show that the effects of carbon-sequestration time and initial water-content of aggregate on the carbon-sequestration efficiency of RCA are the most significant. The optimized parameters were 30 °C temperature, 0.3 MPa pressure, 24 h time and 25 % initial water content with the maximum amount of carbon-sequestration at 8.42 %. The carbon-sequestration reduced the width of the recycled aggregate interfacial transition zone (ITZ) in concrete, increased the microhardness of ITZ and mortar, and decreased the porosity of CRCA. The CRCA elevated the compressive strength, splitting tensile strength and flexural strength of the concrete (28d) by 13.5 %, 8.5 % and 7.4 %, respectively. The drying shrinkage at 28d of RCA-concrete was decreased by 12.0 % when RCA was replaced with CRCA, however with the CRCA value still 16.2 % higher than that of NCA-concrete. Moreover, CRCA can decrease the medium transport coefficients of water, chloride, and gas in concrete when compared with the RCA-concrete while they are still greater than those of NCA-concrete. © 2024 Elsevier Ltd
Keyword :
Carbon Carbon Chlorine compounds Chlorine compounds Compressive strength Compressive strength Concrete aggregates Concrete aggregates Durability Durability Porosity Porosity Recycling Recycling Shrinkage Shrinkage Tensile strength Tensile strength
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Qian, Rusheng , Lin, Wan-Wendner , Yang, Chengqi et al. Investigations on carbon-sequestration optimization of recycled coarse-aggregate and its effects on concrete performances [J]. | Journal of Building Engineering , 2024 , 90 . |
MLA | Qian, Rusheng et al. "Investigations on carbon-sequestration optimization of recycled coarse-aggregate and its effects on concrete performances" . | Journal of Building Engineering 90 (2024) . |
APA | Qian, Rusheng , Lin, Wan-Wendner , Yang, Chengqi , Zhao, Ruze , Ye, Zhibo , Kong, Deyu et al. Investigations on carbon-sequestration optimization of recycled coarse-aggregate and its effects on concrete performances . | Journal of Building Engineering , 2024 , 90 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The steel slag and ground granulated blast furnace slag with high fineness exhibit synergistic effects on hydration progress and can be introduced into concrete in high volume. In this paper, the simulated pore solution (SPS) of ternary cement incorporating ultrafine steel slag (US) and ultrafine ground granulated blast furnace slag (UG) was prepared to examine the passivation behavior of the HRB400 reinforcing steel under SPS. It is found that the rapid growth of passive films occurs primarily within the initial 2–3 days after immersion in the SPS, while the compaction of passive films takes place mainly at the later stages. The open circuit potential and charge transfer resistance of the passive films initially increase and then decrease with the continuous rise in the US content. The Fe2O3 constitutes a significant portion of the passive films above the steels treated with the SPS irrespective of US dosages, whereas the content of FeO is highly influenced by US dosages. The UG-US-C pore solution could enhance the passivation behavior because of lower Ca2+ and higher Na+. In case of UG/US ratio at 2:3, the passive film exhibits the greatest thickness at 7.5 nm and meanwhile with the highest compaction and the least roughness. © 2024 Elsevier Ltd
Keyword :
Blast furnaces Blast furnaces Compaction Compaction Passivation Passivation Slag cement Slag cement
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yang, Zhengxian , Zheng, Mingye , Xiong, Xiaoli et al. Passivation behavior of reinforcement in simulated pore solutions of composite cement incorporating ultrafine steel slag and blast furnace slag [J]. | Journal of Building Engineering , 2024 , 97 . |
MLA | Yang, Zhengxian et al. "Passivation behavior of reinforcement in simulated pore solutions of composite cement incorporating ultrafine steel slag and blast furnace slag" . | Journal of Building Engineering 97 (2024) . |
APA | Yang, Zhengxian , Zheng, Mingye , Xiong, Xiaoli , Zhang, Yong , Briseghella, Bruno , Marano, Giuseppe Carlo . Passivation behavior of reinforcement in simulated pore solutions of composite cement incorporating ultrafine steel slag and blast furnace slag . | Journal of Building Engineering , 2024 , 97 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
This paper presents a comprehensive investigation on the positive potential of steel slag (SS) to mitigate the autogenous shrinkage of alkali-activated slag (AAS) while maintaining a reasonably high strength. Changes of the physicochemical properties of AAS with the addition of SS were examined in terms of hydration heat, autogenous shrinkage, chemical shrinkage, internal relative humidity (RH) and mechanical behaviors. The microstructure of AAS-SS systems was characterized using X-ray diffraction, thermogravimetric analysis and nitrogen adsorption techniques. The shrinkage mechanism and quantification approach of the AAS-SS systems were discussed, in addition to a sustainability assessment. The results indicate that the 7-day autogenous shrinkage of AAS paste was decreased by 16 %, 35 % and 42 % when SS was incorporated by 15 %, 30 % and 45 % respectively, owing to the obviously slower hydration and higher internal RH at the early age. Meanwhile, the inclusion of SS substantially mitigates the chemical shrinkage and reduces the pores below 50 nm, thereby significantly decreasing the capillary pressure associated with smaller water-filled pore sizes. Substitutions of blast furnace slag by up to 45 % SS enable to reduce CO2 emissions by 18.4 kg/m3 and decrease autogenous shrinkage by 42 % without obvious compromise in the loss of elastic modulus and compressive strength. © 2024 Elsevier Ltd
Keyword :
Atomic absorption spectrometry Atomic absorption spectrometry Blast furnaces Blast furnaces Compressive strength Compressive strength Gas adsorption Gas adsorption Hydration Hydration Physicochemical properties Physicochemical properties Pore size Pore size Shrinkage Shrinkage Slags Slags Sustainable development Sustainable development Thermogravimetric analysis Thermogravimetric analysis
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Kang , Yang, Zhengxian , Nicolaides, Demetris et al. Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag [J]. | Construction and Building Materials , 2024 , 438 . |
MLA | Li, Kang et al. "Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag" . | Construction and Building Materials 438 (2024) . |
APA | Li, Kang , Yang, Zhengxian , Nicolaides, Demetris , Liang, Minfei , Briseghella, Bruno , Marano, Giuseppe Carlo et al. Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag . | Construction and Building Materials , 2024 , 438 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The nano-engineered cementitious composites (NCC) were prepared using g-C3N4/CoAl-LDH nanoflower (nano-CN/L), in combination with mineral admixtures including fly ash (FA), metakaolin (MK), and ground granulated blast furnace slag (GGBFS). The synergistic effects and mechanisms of nano-CN/L and mineral admixtures on the mechanical, chloride penetration resistance and air purification properties of NCC were investigated. The results show that nano-CN/L promotes the early hydration of cementitious materials and improves the composition and morphology of C-S-H gel. Furthermore, the filling effect of nano-CN/L significantly optimizes the pore structure and interfacial crack width of NCC, thereby eliminating the adverse impact of FA, MK, and GGBFS on its early mechanical strengths. Additionally, nano-CN/L enhances the chloride penetration resistance and NOx removal properties of NCC through its strong ion adsorption and photocatalytic activity, respectively. Incorporating 0.9 % nano-CN/L by mass of cementitious materials reduces the chloride diffusion coefficient of NCC at curing age of 56d by 26.9 % and increases the NOx removal ratio by 11 times. The 7d's compressive and flexural strengths of NCC increase by 13.6 % and 4.6 %, respectively, compared to the one without nano-CN/L. As a novel multifunctional nanomaterial, nano-CN/L not only provides a new pathway for extending the service life of cementitious composites, but also injects new momentum into their environmental-friendly development. © 2024 Elsevier Ltd
Keyword :
Air cleaners Air cleaners Blast furnaces Blast furnaces Chlorination Chlorination Compressive strength Compressive strength Nanoclay Nanoclay Nanoflowers Nanoflowers
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lu, Lin , Yang, Zhengxian , Ning, Pingping et al. Synergistic enhancement of g-C3N4/CoAl-LDH nanoflower and mineral admixtures on the properties of nano-engineered cementitious composites [J]. | Construction and Building Materials , 2024 , 450 . |
MLA | Lu, Lin et al. "Synergistic enhancement of g-C3N4/CoAl-LDH nanoflower and mineral admixtures on the properties of nano-engineered cementitious composites" . | Construction and Building Materials 450 (2024) . |
APA | Lu, Lin , Yang, Zhengxian , Ning, Pingping , Marano, Giuseppe Carlo , Zhang, Yong . Synergistic enhancement of g-C3N4/CoAl-LDH nanoflower and mineral admixtures on the properties of nano-engineered cementitious composites . | Construction and Building Materials , 2024 , 450 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The steel slag and ground granulated blast furnace slag with high fineness exhibit synergistic effects on hydration progress and can be introduced into concrete in high volume. In this paper, the simulated pore solution (SPS) of ternary cement incorporating ultrafine steel slag (US) and ultrafine ground granulated blast furnace slag (UG) was prepared to examine the passivation behavior of the HRB400 reinforcing steel under SPS. It is found that the rapid growth of passive films occurs primarily within the initial 2-3 days after immersion in the SPS, while the compaction of passive films takes place mainly at the later stages. The open circuit potential and charge transfer resistance of the passive films initially increase and then decrease with the continuous rise in the US content. The Fe2O3 constitutes a significant portion of the passive films above the steels treated with the SPS irrespective of US dosages, whereas the content of FeO is highly influenced by US dosages. The UG-US-C pore solution could enhance the passivation behavior because of lower Ca2+ and higher Na+. In case of UG/US ratio at 2:3, the passive film exhibits the greatest thickness at 7.5 nm and meanwhile with the highest compaction and the least roughness.
Keyword :
Electrochemical properties Electrochemical properties Passive films Passive films Reinforcing steel Reinforcing steel Simulated pore solution Simulated pore solution Surface characteristics Surface characteristics Ultrafine steel slag Ultrafine steel slag
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yang, Zhengxian , Zheng, Mingye , Xiong, Xiaoli et al. Passivation behavior of reinforcement in simulated pore solutions of composite cement incorporating ultrafine steel slag and blast furnace slag [J]. | JOURNAL OF BUILDING ENGINEERING , 2024 , 97 . |
MLA | Yang, Zhengxian et al. "Passivation behavior of reinforcement in simulated pore solutions of composite cement incorporating ultrafine steel slag and blast furnace slag" . | JOURNAL OF BUILDING ENGINEERING 97 (2024) . |
APA | Yang, Zhengxian , Zheng, Mingye , Xiong, Xiaoli , Zhang, Yong , Briseghella, Bruno , Marano, Giuseppe Carlo . Passivation behavior of reinforcement in simulated pore solutions of composite cement incorporating ultrafine steel slag and blast furnace slag . | JOURNAL OF BUILDING ENGINEERING , 2024 , 97 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The nano-engineered cementitious composites (NCC) were prepared using g-C3N4/CoAl-LDH 3 N 4 /CoAl-LDH nanoflower (nanoCN/L), in combination with mineral admixtures including fly ash (FA), metakaolin (MK), and ground granulated blast furnace slag (GGBFS). The synergistic effects and mechanisms of nano-CN/L and mineral admixtures on the mechanical, chloride penetration resistance and air purification properties of NCC were investigated. The results show that nano-CN/L promotes the early hydration of cementitious materials and improves the composition and morphology of C-S-H gel. Furthermore, the filling effect of nano-CN/L significantly optimizes the pore structure and interfacial crack width of NCC, thereby eliminating the adverse impact of FA, MK, and GGBFS on its early mechanical strengths. Additionally, nano-CN/L enhances the chloride penetration resistance and NOx x removal properties of NCC through its strong ion adsorption and photocatalytic activity, respectively. Incorporating 0.9 % nano-CN/L by mass of cementitious materials reduces the chloride diffusion coefficient of NCC at curing age of 56d by 26.9 % and increases the NOx x removal ratio by 11 times. The 7d's compressive and flexural strengths of NCC increase by 13.6 % and 4.6 %, respectively, compared to the one without nano-CN/L. As a novel multifunctional nanomaterial, nano-CN/L not only provides a new pathway for extending the service life of cementitious composites, but also injects new momentum into their environmental-friendly development.
Keyword :
Chloride penetration resistance Chloride penetration resistance Mechanical strength Mechanical strength Mineral admixture Mineral admixture Nano-engineered cementitious composites Nano-engineered cementitious composites
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lu, Lin , Yang, Zhengxian , Ning, Pingping et al. Synergistic enhancement of g-C3N4/CoAl-LDH nanoflower and mineral admixtures on the properties of nano-engineered cementitious composites [J]. | CONSTRUCTION AND BUILDING MATERIALS , 2024 , 450 . |
MLA | Lu, Lin et al. "Synergistic enhancement of g-C3N4/CoAl-LDH nanoflower and mineral admixtures on the properties of nano-engineered cementitious composites" . | CONSTRUCTION AND BUILDING MATERIALS 450 (2024) . |
APA | Lu, Lin , Yang, Zhengxian , Ning, Pingping , Marano, Giuseppe Carlo , Zhang, Yong . Synergistic enhancement of g-C3N4/CoAl-LDH nanoflower and mineral admixtures on the properties of nano-engineered cementitious composites . | CONSTRUCTION AND BUILDING MATERIALS , 2024 , 450 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
This paper presents a comprehensive investigation on the positive potential of steel slag (SS) to mitigate the autogenous shrinkage of alkali -activated slag (AAS) while maintaining a reasonably high strength. Changes of the physicochemical properties of AAS with the addition of SS were examined in terms of hydration heat, autogenous shrinkage, chemical shrinkage, internal relative humidity (RH) and mechanical behaviors. The microstructure of AAS-SS systems was characterized using X-ray diffraction, thermogravimetric analysis and nitrogen adsorption techniques. The shrinkage mechanism and quantification approach of the AAS-SS systems were discussed, in addition to a sustainability assessment. The results indicate that the 7 -day autogenous shrinkage of AAS paste was decreased by 16 %, 35 % and 42 % when SS was incorporated by 15 %, 30 % and 45 % respectively, owing to the obviously slower hydration and higher internal RH at the early age. Meanwhile, the inclusion of SS substantially mitigates the chemical shrinkage and reduces the pores below 50 nm, thereby significantly decreasing the capillary pressure associated with smaller water -filled pore sizes. Substitutions of blast furnace slag by up to 45 % SS enable to reduce CO 2 emissions by 18.4 kg/m 3 and decrease autogenous shrinkage by 42 % without obvious compromise in the loss of elastic modulus and compressive strength.
Keyword :
Alkali-activated slag Alkali-activated slag Autogenous shrinkage Autogenous shrinkage Chemical shrinkage Chemical shrinkage Hydration Hydration Steel slag Steel slag Sustainability Sustainability
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Kang , Yang, Zhengxian , Nicolaides, Demetris et al. Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag [J]. | CONSTRUCTION AND BUILDING MATERIALS , 2024 , 438 . |
MLA | Li, Kang et al. "Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag" . | CONSTRUCTION AND BUILDING MATERIALS 438 (2024) . |
APA | Li, Kang , Yang, Zhengxian , Nicolaides, Demetris , Liang, Minfei , Briseghella, Bruno , Marano, Giuseppe Carlo et al. Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag . | CONSTRUCTION AND BUILDING MATERIALS , 2024 , 438 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Utilizations of industrial byproducts and wastes as much as possible, together with desirable durability, are essential to sustainable development of building materials. In this work, the chloride diffusion behavior of alkali -activated steel slag (SS) and ultrafine blast furnace slag (UFS) is studied, towards deeper insights into the effect of electrical double layer on the resistance to chloride penetration. The microstructure improvement of alkali -activated SS with increasing addition of UFS was examined by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, mercury intrusion porosimetry and nitrogen sorption. The zeta potentials above the pore surface of various alkali -activated SS-UFS systems were measured and compared. The electrostatic resistance of the electrical double layer to chloride diffusion was analyzed and discussed. Results indicate that UFS dosages above 40% substantially refines the pore structure of alkali -activated SS and then the mechanism governing chloride penetration shifts from capillary transport to gel transport. The exposure of higher chloride sodium concentration results in the pore surface of alkali -activated SS-UFS systems to be less negatively charged and the zeta potential is reversed to be positive value after continuous ion exchange between sodium and calcium. The presence of UFS can remarkably increase the proportion of physically bound chloride that attains approximately 80% of the total binding capacity. The impediment of electrical double layer to chloride diffusivity becomes increasingly pronounced with pore structure refinement, especially for mixtures with diffusion coefficients below 5 x 10 -12 m 2 /s obtained based on Fick ' s law of diffusion.
Keyword :
Alkali-activated system Alkali-activated system Electrical double layer Electrical double layer Nanoscale chloride transport Nanoscale chloride transport Steel slag Steel slag Ultrafine blast furnace slag Ultrafine blast furnace slag Zeta potential Zeta potential
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Yong , Xu, Xianqiang , Wang, Zhendi et al. Nanoscale chloride diffusion in alkali-activated steel slag and ultrafine blast furnace slag considering the electrical double layer effect [J]. | JOURNAL OF BUILDING ENGINEERING , 2024 , 88 . |
MLA | Zhang, Yong et al. "Nanoscale chloride diffusion in alkali-activated steel slag and ultrafine blast furnace slag considering the electrical double layer effect" . | JOURNAL OF BUILDING ENGINEERING 88 (2024) . |
APA | Zhang, Yong , Xu, Xianqiang , Wang, Zhendi , Yang, Zhengxian , Qian, Rusheng , Marano, Giuseppe Carlo . Nanoscale chloride diffusion in alkali-activated steel slag and ultrafine blast furnace slag considering the electrical double layer effect . | JOURNAL OF BUILDING ENGINEERING , 2024 , 88 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The introduction of high-volume steel slag into ordinary Portland cement (OPC) has a negative effect on the pore structure due to its poor hydraulic reactivity. Synergistic effects between steel slag and ground granulated blast furnace slag (GGBFS) in cementitious system have drawn increasing attention. In this study, the modified Andreasen and Andersen (MAA) model was adopted for the mixture design of ternary cementitious system incorporating high-volume ultrafine steel slag (USS) and GGBFS without a compromise in strength. X-ray computed tomography (X-CT) and mercury intrusion porosimetry (MIP) were applied to characterize the pore structure of various cementitious mortars in terms of porosity, pore size, pore number, pore morphology and homogeneity. Results manifested that the adverse impact of USS addition on the pore structure of binary cement was effectively mitigated in the ternary cement USS-GGBFS-OPC after mixture optimization, whereby the pore size was shifted toward a finer distribution and simultaneously with a higher uniformity and consequently promoting the compressive strength development. An increase of cumulative pore volume as captured by X-CT was associated with an exponential decrease of the number of pores while together with larger pore sizes. The increase in the number of small pores led to an increase in the pore tortuosity and degree of sphericity. The fractal dimension of pores was negatively correlated with pore inhomogeneity and compressive strength. These findings provide new insights into homogeneity-oriented mixture design of composite cementitious binders based on gap-graded particle packing, together with their synergistic effects on hydration progress.
Keyword :
Fractal dimension Fractal dimension Homogeneity Homogeneity Particle packing optimization Particle packing optimization Pore structure Pore structure Ultrafine steel slag Ultrafine steel slag X-ray computed tomography X-ray computed tomography
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yang, Zhengxian , Dong, Shilin , Zhang, Yong . Particle packing optimization and pore structure assessment of ternary cementitious system based on X-ray computed tomography and mercury intrusion porosimetry [J]. | CONSTRUCTION AND BUILDING MATERIALS , 2024 , 413 . |
MLA | Yang, Zhengxian et al. "Particle packing optimization and pore structure assessment of ternary cementitious system based on X-ray computed tomography and mercury intrusion porosimetry" . | CONSTRUCTION AND BUILDING MATERIALS 413 (2024) . |
APA | Yang, Zhengxian , Dong, Shilin , Zhang, Yong . Particle packing optimization and pore structure assessment of ternary cementitious system based on X-ray computed tomography and mercury intrusion porosimetry . | CONSTRUCTION AND BUILDING MATERIALS , 2024 , 413 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Recycled coarse-aggregate (RCA) derived from waste concrete can be re-used for concrete preparation, which is now limited due to its drawbacks such as micro-cracks, high-porosity, and reduced concrete strengths. To remedy these deficiencies, carbon-sequestration was employed to enhance RCA and the conditions were optimized, including the temperature (20 degrees C-40 degrees C), pressure (0.1 MPa-0.3 MPa), time (5 h-24 h) and initial water content (25%-75 %). There parameters were optimized based on the orthogonal test with scheme L-9(3(4)), which was evaluated based on RCA carbon-sequestration amount as well as its properties. With the optimized parameters, RCA was enhanced as CRCA. Both RCA and CRCA were utilized to fully replace natural coarse-aggregate (NCA) in concrete and concrete basic performances were investigated systematically, including strengths, shrinkage and medium transport properties. The results show that the effects of carbon-sequestration time and initial water-content of aggregate on the carbon-sequestration efficiency of RCA are the most significant. The optimized parameters were 30 degrees C temperature, 0.3 MPa pressure, 24 h time and 25 % initial water content with the maximum amount of carbon-sequestration at 8.42 %. The carbon-sequestration reduced the width of the recycled aggregate interfacial transition zone (ITZ) in concrete, increased the microhardness of ITZ and mortar, and decreased the porosity of CRCA. The CRCA elevated the compressive strength, splitting tensile strength and flexural strength of the concrete (28d) by 13.5 %, 8.5 % and 7.4 %, respectively. The drying shrinkage at 28d of RCA-concrete was decreased by 12.0 % when RCA was replaced with CRCA, however with the CRCA value still 16.2 % higher than that of NCA-concrete. Moreover, CRCA can decrease the medium transport coefficients of water, chloride, and gas in concrete when compared with the RCA-concrete while they are still greater than those of NCA-concrete.
Keyword :
Carbon-sequestration reinforcement Carbon-sequestration reinforcement Durability Durability Mechanical property Mechanical property Microstructure Microstructure Recycled coarse-aggregate Recycled coarse-aggregate
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Qian, Rusheng , Wan-Wendner, Lin , Yang, Chengqi et al. Investigations on carbon-sequestration optimization of recycled coarse-aggregate and its effects on concrete performances [J]. | JOURNAL OF BUILDING ENGINEERING , 2024 , 90 . |
MLA | Qian, Rusheng et al. "Investigations on carbon-sequestration optimization of recycled coarse-aggregate and its effects on concrete performances" . | JOURNAL OF BUILDING ENGINEERING 90 (2024) . |
APA | Qian, Rusheng , Wan-Wendner, Lin , Yang, Chengqi , Zhao, Ruze , Ye, Zhibo , Kong, Deyu et al. Investigations on carbon-sequestration optimization of recycled coarse-aggregate and its effects on concrete performances . | JOURNAL OF BUILDING ENGINEERING , 2024 , 90 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |