• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:张宏伟

Refining:

Type

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 6 >
Continuous-flow electrooxidation for scalable biomass upgrading over copper-supported CoFe Prussian blue analogues Scopus
期刊论文 | 2025 , 5 (1) | Chemical Synthesis
Abstract&Keyword Cite

Abstract :

Electrochemical biomass upgrading is a promising substitute for oxygen evolution reaction (OER) to generate valuable chemicals in conjunction with hydrogen generation. Pursuing highly efficient and durable electrocatalysts for significant concentration levels (≥ 50 mM) of biomass electrooxidation remains an enduring challenge. Herein, we introduce a robust Cu-supported CoFe Prussian blue analogue (CoFe PBA/CF) electrocatalyst, adept at facilitating high-concentration (50 mM) 5-hydroxymethylfurfural (HMF) oxidation into 2,5-furandicarboxylic acid (FDCA), achieving an exceptional HMF conversion (100%) with a notable FDCA yield of 98.4%. The influence of copper substrate and adsorption energy are therefore discussed. Impressively, the CoFe PBA/CF electrode sustains considerable durability in a continuous-flow electrochemical reactor designed for consecutive FDCA production, showcasing FDCA yields of 100/94% at flow rates of 0.4/0.8 mL·min-1 over 60 h’ uninterrupted electrolysis. This work provides a promising strategy to develop highly efficient and robust electrocatalysts for the consecutive production of high-value products coupled with green H2 production. © The Author(s) 2025.

Keyword :

5-hydroxymethylfurfural oxidation 5-hydroxymethylfurfural oxidation CoFe Prussian blue analogues CoFe Prussian blue analogues electrochemical conversion electrochemical conversion high concentration high concentration structural reconstruction structural reconstruction

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhang, B. , Xiao, T. , Hu, C. et al. Continuous-flow electrooxidation for scalable biomass upgrading over copper-supported CoFe Prussian blue analogues [J]. | Chemical Synthesis , 2025 , 5 (1) .
MLA Zhang, B. et al. "Continuous-flow electrooxidation for scalable biomass upgrading over copper-supported CoFe Prussian blue analogues" . | Chemical Synthesis 5 . 1 (2025) .
APA Zhang, B. , Xiao, T. , Hu, C. , Liu, Z. , Chen, P. , Zhao, Z. et al. Continuous-flow electrooxidation for scalable biomass upgrading over copper-supported CoFe Prussian blue analogues . | Chemical Synthesis , 2025 , 5 (1) .
Export to NoteExpress RIS BibTex

Version :

Deciphering Ni0/Ni(OH)+ interfacial sites for deep hydrogenation of dicyclopentadiene resin SCIE
期刊论文 | 2025 , 512 | CHEMICAL ENGINEERING JOURNAL
Abstract&Keyword Cite

Abstract :

Deep hydrogenation of dicyclopentadiene resin (DCPD resin) plays an important role in enhancing its performance and broadening its applications. However, designing suitable catalysts for promoting DCPD resin deep hydrogenation remains a challenge due to the high steric hindrance and abundant unsaturated bonds in DCPD resin, requiring strong binding to C=C double bonds. We herein propose a strategy for simultaneously constructing highly-dispersed Ni particles for hydrogen dissociation and interfacial Ni0/Ni(OH)+ sites for C=C adsorption by controlled reduction of Ni phyllosilicate (Ni PS). The catalyst, after reduction at 400 degrees C, demonstrated balanced ratio between Ni0 and interfacial Ni0/Ni(OH)+ sites, and achieved a hydrogenation degree of 99.8% (TOF: 68.8 h-1) while maintaining 99.3% efficiency after seven consecutive cycles. Through in-situ DRIFTS analysis and density functional theory (DFT) calculations, it is confirmed that the introduction of Ni0/Ni(OH)+ interfacial sites results in superior activity compared to pure Ni0 or unreduced PS due to optimized charge transfer and electronic configuration. This work not only establishes a simple and environmentally-friendly approach to design efficient catalysts for polymer hydrogenation, but also provides insights into the mechanism of unsaturated bond hydrogenation through the synergistic effects of Ni0 and Ni0/Ni(OH)+ interfacial sites.

Keyword :

DCPD resin DCPD resin Hydrogenation Hydrogenation Ni(OH) plus Ni(OH) plus Ni phyllosilicate Ni phyllosilicate

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Qunhong , Liu, Zhen , Yang, Zongxuan et al. Deciphering Ni0/Ni(OH)+ interfacial sites for deep hydrogenation of dicyclopentadiene resin [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 .
MLA Liu, Qunhong et al. "Deciphering Ni0/Ni(OH)+ interfacial sites for deep hydrogenation of dicyclopentadiene resin" . | CHEMICAL ENGINEERING JOURNAL 512 (2025) .
APA Liu, Qunhong , Liu, Zhen , Yang, Zongxuan , Wu, Qingchen , Li, Zimeng , Liu, Zhichen et al. Deciphering Ni0/Ni(OH)+ interfacial sites for deep hydrogenation of dicyclopentadiene resin . | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 .
Export to NoteExpress RIS BibTex

Version :

Toward tailored anion exchange membranes for high-performance electrocatalytic oxidation of HMF to FDCA SCIE
期刊论文 | 2025 , 721 | JOURNAL OF MEMBRANE SCIENCE
Abstract&Keyword Cite

Abstract :

Membrane separator that is highly ionic conductive and alkaline stable is essential for the efficient, scalable electrocatalytic oxidation of HMF to FDCA, a key process for sustainable development. Drawing inspiration from the microstructural design of Nafion, we developed a series of side-chain imidazolium-functionalized anion exchange membranes (AEMs), employing the chemically stable polyethersulfone (PES) as the base polymer. Functionalization of PES side chains with chloromethyl groups, followed by C2-substituted imidazolium modification, enabled precise tuning of the membrane's physicochemical properties and structural characteristics. This tailored approach yielded an optimized DIM-PES-1.0 AEM exhibiting complete HMF conversion, with 94.0 % selectivity for FDCA and 94.1 % Faradaic efficiency, outperforming the commercial Fumasep FAA-3-PK-130 AEM, which achieved only 85.5 % FDCA selectivity under similar conditions. Notably, the DIM-PES1.0 AEM demonstrated high alkaline stability, substantially retaining its electrocatalytic activity across 15 cycles, in contrast to the rapid degradation observed in FAA-3-PK-130 AEM after only three cycles. Our findings showcase a scalable, efficient strategy for producing high-performance AEMs under mild conditions, highlighting their potential for advancing sustainable electrocatalytic processes.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Ge, Xuehui , Qian, Jun , Zhu, Zhen et al. Toward tailored anion exchange membranes for high-performance electrocatalytic oxidation of HMF to FDCA [J]. | JOURNAL OF MEMBRANE SCIENCE , 2025 , 721 .
MLA Ge, Xuehui et al. "Toward tailored anion exchange membranes for high-performance electrocatalytic oxidation of HMF to FDCA" . | JOURNAL OF MEMBRANE SCIENCE 721 (2025) .
APA Ge, Xuehui , Qian, Jun , Zhu, Zhen , Cheng, Yafei , Yuan, Lei , Jia, Jinjie et al. Toward tailored anion exchange membranes for high-performance electrocatalytic oxidation of HMF to FDCA . | JOURNAL OF MEMBRANE SCIENCE , 2025 , 721 .
Export to NoteExpress RIS BibTex

Version :

Cu-induced Ni3+ -O active sites in Prussian blue analogues enable nearly 100 % selective electrooxidation of 5-hydroxymethylfurfural to produce kilogram-scale 2,5-furandicarboxylic acid SCIE
期刊论文 | 2025 , 378 | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY
Abstract&Keyword Cite

Abstract :

2,5-Furandicarboxylic acid (FDCA), a crucial precursor for synthesizing biodegradable polymers as a sustainable alternative to petroleum-derived plastics, has garnered significant interest for its production via electrolysis. However, this approach remains hindered by the inherent weak reactant-catalyst adsorption and sluggish interfacial kinetics. Herein, we report Cu-incorporated NiFe Prussian blue analogues (PBA) that enable rapid electrooxidation of 5-hydroxymethylfurfural (HMF) to FDCA with nearly 100 % conversion, selectivity, and Faradaic efficiency, even at an industrial-scale concentration of 100 mM. In situ Raman and electrochemical characterizations reveal that Cu-incorporation elongates Ni-N bonds and accelerates their reconstruction into defect-rich Ni2+-OH species, which undergo deprotonation to form highly active Ni3+-O species. X-ray technology and theoretical calculations show that the electronegative Cu2+ prompts a shift of the d-band center of neighboring Ni atoms toward the Fermi level, thereby enhancing the adsorption of both hydroxyl (-OH) and aldehyde (-CHO) groups in HMF and thus accelerating electrooxidation of HMF to FDCA. Practical applicability using a continuous flow electrolyzer demonstrates the potential for industrial application, achieving a kilogramscale FDCA production with 99 % purity and a yield exceeding 90 % over 1200 h. This work realizes the valence regulation of active sites in PBA through a cation engineering approach and verifies its feasibility in sustainable biomass electro-oxidation upgrading.

Keyword :

2,5-furandicarboxylic acid 2,5-furandicarboxylic acid Cu-induced reconstruction Cu-induced reconstruction Ni3+-O active sites Ni3+-O active sites Prussian blue analogues Prussian blue analogues Selective electrooxidation Selective electrooxidation

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Zhichen , Xiao, Tiantian , Wu, Xinru et al. Cu-induced Ni3+ -O active sites in Prussian blue analogues enable nearly 100 % selective electrooxidation of 5-hydroxymethylfurfural to produce kilogram-scale 2,5-furandicarboxylic acid [J]. | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY , 2025 , 378 .
MLA Liu, Zhichen et al. "Cu-induced Ni3+ -O active sites in Prussian blue analogues enable nearly 100 % selective electrooxidation of 5-hydroxymethylfurfural to produce kilogram-scale 2,5-furandicarboxylic acid" . | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY 378 (2025) .
APA Liu, Zhichen , Xiao, Tiantian , Wu, Xinru , Hu, Cejun , Lu, Xue Feng , Zhang, Hongwei et al. Cu-induced Ni3+ -O active sites in Prussian blue analogues enable nearly 100 % selective electrooxidation of 5-hydroxymethylfurfural to produce kilogram-scale 2,5-furandicarboxylic acid . | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY , 2025 , 378 .
Export to NoteExpress RIS BibTex

Version :

Strategic Engineering of Axially Coordinated Ligands in Fe-N-C Catalysts for Enhanced Oxygen Reduction Electrocatalysis SCIE
期刊论文 | 2025 , 18 (15) | CHEMSUSCHEM
Abstract&Keyword Cite

Abstract :

The single-atom Fe-N-C electrocatalyst is considered one of the most promising alternatives to the expensive and scarce Pt-based catalysts for promoting oxygen reduction reaction in fuel cells. Regulating the coordination environment of the Fe center is a feasible strategy to improve its stability and catalytic activity. Recently, the introduction of axial ligands to Fe-N-C has attracted extensive research interest, providing a new dimension for coordination environment regulation compared with the common approaches of in-plane doping or defect construction. This review focuses on discussing the contribution of axial ligand decoration to the activity and stability of the Fe-N-C catalyst, evaluating different types of axial ligands that have been introduced in the recent literature. Through summarizing the progress in decorating axial ligands to the Fe-N-C system, this review provides profound insights into the design and preparation of axially coordinated Fe-N-C catalysts.

Keyword :

axially coordinated ligands axially coordinated ligands electronic structures electronic structures Fe-N-C Fe-N-C oxygen reduction reactions oxygen reduction reactions single-atom catalysts single-atom catalysts

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yang, Zongxuan , Wu, Qingchen , Zhang, Hongwei et al. Strategic Engineering of Axially Coordinated Ligands in Fe-N-C Catalysts for Enhanced Oxygen Reduction Electrocatalysis [J]. | CHEMSUSCHEM , 2025 , 18 (15) .
MLA Yang, Zongxuan et al. "Strategic Engineering of Axially Coordinated Ligands in Fe-N-C Catalysts for Enhanced Oxygen Reduction Electrocatalysis" . | CHEMSUSCHEM 18 . 15 (2025) .
APA Yang, Zongxuan , Wu, Qingchen , Zhang, Hongwei , Hu, Cejun , Bao, Xiaojun , Yuan, Pei . Strategic Engineering of Axially Coordinated Ligands in Fe-N-C Catalysts for Enhanced Oxygen Reduction Electrocatalysis . | CHEMSUSCHEM , 2025 , 18 (15) .
Export to NoteExpress RIS BibTex

Version :

Engineering aerobic-stable oxygen vacancies-Ti3+defects of Pd/Mn-TiO2 for boosting nitrile butadiene rubber hydrogenation SCIE
期刊论文 | 2025 , 522 | CHEMICAL ENGINEERING JOURNAL
Abstract&Keyword Cite

Abstract :

Heterogeneous hydrogenation of nitrile butadiene rubber (NBR) is a pivotal technology for producing highvalue-added hydrogenated NBR, yet the complex macromolecular configuration poses critical challenges to catalyst activity and stability. Herein, metal-doped M-TiO2 (M = Mo, V, Mn species) nanosheet supports featuring aerobic-stable oxygen vacancies (Vo) and Ti3+ sites were engineered, and loaded with Pd for NBR hydrogenation. Among the dopants, Mn species exhibits optimal charge compensation effect, achieving the lowest Vo formation energy (1.73 eV) and highest Vo-Ti3+ density (25.8% Vo, 27.1% Ti3+), outperforming V (3.38 eV; 18.1% Vo, 17.2% Ti3+) and Mo (4.03 eV; 15.5% Vo, 12.7% Ti3+). These Vo-Ti3+ sites enhance the dispersion and stability of Pd, endowing Pd with electron-rich characteristics which synergistically strengthen C--C and H2 adsorption-activation process while reducing the activation energy barrier. As a result, Pd/Mn-TiO2 exhibits excellent catalytic activity (97%) and TOF value (306 h- 1) for NBR hydrogenation, surpassing Pd/VTiO2 (94%, 268 h- 1), Pd/Mo-TiO2 (86%, 245 h- 1), and Pd/TiO2 (75%, 204 h- 1). This work elucidates the role of high-valence metal doping on TiO2 defect engineering, establishing a universal design principle for durable macromolecular hydrogenation catalysts.

Keyword :

Metal-doped Metal-doped NBR Hydrogenation NBR Hydrogenation Oxygen vacancies Oxygen vacancies Ti 3+sites Ti 3+sites

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Shidong , Yang, Zongxuan , Li, Runzhi et al. Engineering aerobic-stable oxygen vacancies-Ti3+defects of Pd/Mn-TiO2 for boosting nitrile butadiene rubber hydrogenation [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 522 .
MLA Wang, Shidong et al. "Engineering aerobic-stable oxygen vacancies-Ti3+defects of Pd/Mn-TiO2 for boosting nitrile butadiene rubber hydrogenation" . | CHEMICAL ENGINEERING JOURNAL 522 (2025) .
APA Wang, Shidong , Yang, Zongxuan , Li, Runzhi , Zhang, Kewen , Zhao, Zhenyu , Zhang, Hongwei et al. Engineering aerobic-stable oxygen vacancies-Ti3+defects of Pd/Mn-TiO2 for boosting nitrile butadiene rubber hydrogenation . | CHEMICAL ENGINEERING JOURNAL , 2025 , 522 .
Export to NoteExpress RIS BibTex

Version :

High-efficiency Electroreduction of O2 into H2O2 over ZnCo Bimetallic Triazole Frameworks Promoted by Ligand Activation SCIE
期刊论文 | 2024 , 63 (2) | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
WoS CC Cited Count: 42
Abstract&Keyword Cite

Abstract :

Co-based metal-organic frameworks (MOFs) as electrocatalysts for two-electron oxygen reduction reaction (2e(-) ORR) are highly promising for H2O2 production, but suffer from the intrinsic activity-selectivity trade-off. Herein, we report a ZnCo bimetal-triazole framework (ZnCo-MTF) as high-efficiency 2e(-) ORR electrocatalysts. The experimental and theoretical results demonstrate that the coordination between 1,2,3-triazole and Co increases the antibonding-orbital occupancy on the Co-N bond, promoting the activation of Co center. Besides, the adjacent Zn-Co sites on 1,2,3-triazole enable an asymmetric "side-on" adsorption mode of O-2, favoring the reduction of O-2 molecules and desorption of OOH* intermediate. By virtue of the unique ligand effect, the ZnCo-MTF exhibits a 2e(-) ORR selectivity of approximate to 100 %, onset potential of 0.614 V and H2O2 production rate of 5.55 mol g(cat)(-1) h(-1), superior to the state-of-the-art zeolite imidazole frameworks. Our work paves the way for the design of 2e(-) ORR electrocatalysts with desirable coordination and electronic structure.

Keyword :

hydrogen peroxide hydrogen peroxide Ligand effect Ligand effect metal-organic framework metal-organic framework metal-triazole framework metal-triazole framework Two electron oxygen reduction Two electron oxygen reduction

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Zi-Meng , Zhang, Chao-Qi , Liu, Chao et al. High-efficiency Electroreduction of O2 into H2O2 over ZnCo Bimetallic Triazole Frameworks Promoted by Ligand Activation [J]. | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2024 , 63 (2) .
MLA Li, Zi-Meng et al. "High-efficiency Electroreduction of O2 into H2O2 over ZnCo Bimetallic Triazole Frameworks Promoted by Ligand Activation" . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 63 . 2 (2024) .
APA Li, Zi-Meng , Zhang, Chao-Qi , Liu, Chao , Zhang, Hong-Wei , Song, Hao , Zhang, Zhi-Qiang et al. High-efficiency Electroreduction of O2 into H2O2 over ZnCo Bimetallic Triazole Frameworks Promoted by Ligand Activation . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2024 , 63 (2) .
Export to NoteExpress RIS BibTex

Version :

Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction SCIE
期刊论文 | 2024 , 59 , 293-302 | CHINESE JOURNAL OF CATALYSIS
WoS CC Cited Count: 10
Abstract&Keyword Cite

Abstract :

Electrocatalytic nitrate reduction reaction (NO3RR) has been capturing immense interest in the industrial application of ammonia synthesis, and it involves complex reaction routes accompanied by multi-electron transfer, thus causing a challenge to achieve high efficiency for catalysts. Herein, we customized the Cu-O-Ti-Ov (oxygen vacancy) structure on the Cu/TiO2 catalyst, identified through density functional theory (DFT) calculations as the synergic active site for NO3RR. It is found that Cu-O-Ti-Ov site facilitates the adsorption/association of NOx- and promotes the hydrogenation of NO3- to NH3 via adsorbed *H species. This effectively suppresses the competing hydrogen evolution reaction (HER) and exhibits a lower reaction energy barrier for NO3RR, with the reaction pathways: NO3* -> NO2* -> HONO* -> NO* -> *NOH -> *N -> *NH -> *NH2 -> *NH3 -> NH3. The optimized Cu/TiO2 catalyst with rich Cu-O-Ti-Ov sites achieves an NH3 yield rate of 3046.5 mu g h-1 mgcat-1 at -1.0 V vs. RHE, outperforming most of the reported activities. Furthermore, the construction of Cu-O-Ti-Ov sites significantly mitigates the leaching of Cu species, enhancing the stability of the Cu/TiO2 catalyst. Additionally, a mechanistic study, using in situ characterizations and various comparative experiments, further confirms the strong synergy between Cu, Ti, and Ov sites, which is consistent with previous DFT calculations. This study provides a new strategy for designing efficient and stable electrocatalysts in the field of ammonia synthesis. Published by Elsevier B.V. All rights reserved.

Keyword :

Ammonia synthesis Ammonia synthesis Cu-O-Ti-O v site Cu-O-Ti-O v site Cu/TiO 2 catalyst Cu/TiO 2 catalyst Electrocatalytic nitrate reduction Electrocatalytic nitrate reduction Synergic catalytic effect Synergic catalytic effect

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Nie, Yifei , Yan, Hongping , Lu, Suwei et al. Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction [J]. | CHINESE JOURNAL OF CATALYSIS , 2024 , 59 : 293-302 .
MLA Nie, Yifei et al. "Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction" . | CHINESE JOURNAL OF CATALYSIS 59 (2024) : 293-302 .
APA Nie, Yifei , Yan, Hongping , Lu, Suwei , Zhang, Hongwei , Qi, Tingting , Liang, Shijing et al. Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction . | CHINESE JOURNAL OF CATALYSIS , 2024 , 59 , 293-302 .
Export to NoteExpress RIS BibTex

Version :

Mechanochemistry-based liquid-assisted synthesis of hydrophobic Zr-Beta with high metal loading for Meerwein-Ponndorf-Verley reduction SCIE
期刊论文 | 2024 , 431 | JOURNAL OF CATALYSIS
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

Heteroatom-incorporated zeolite catalysts are critical for biomass utilization and feedstock valorization in green chemistry. Key features are adjustable acidity, high stability, and a tailored range of functionalities. However, an environmentally benign synthesis of zeolites with good crystallinity and especially with high levels of metal substitution into the lattice remains challenging. Here, we propose a mechanochemistry-based liquid-assisted method (MCLA) for Zr-incorporated Beta zeolites that is high yielding, facile and sustainable. Compared with the fluoride-mediated hydrothermal method, crystallization times were considerably shortened so that Si-Beta and Zr-Beta (Si/Zr 100) zeolites can be synthesized within 9 and 15 h, respectively. Using the MCLA route, Beta zeolites with Zr loading up to 10.4 wt% (Si/Zr 12.5) were obtained. The materials have excellent catalytic activity for Meerwein-Ponndorf-Verley reductions with much higher water tolerance compared to Zr-Beta prepared by the post-synthesis method. The hydrophobic nature of the MCLA-synthesized zeolites makes them particularly useful as catalysts for organic reactions.

Keyword :

Catalysis Catalysis Hydrophobicity Hydrophobicity Mechanochemistry Mechanochemistry Meerwein-Ponndorf-Verley reduction Meerwein-Ponndorf-Verley reduction Zr -Beta zeolites Zr -Beta zeolites

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhang, Hongwei , Jaenicke, Stephan , Okumura, Kazu et al. Mechanochemistry-based liquid-assisted synthesis of hydrophobic Zr-Beta with high metal loading for Meerwein-Ponndorf-Verley reduction [J]. | JOURNAL OF CATALYSIS , 2024 , 431 .
MLA Zhang, Hongwei et al. "Mechanochemistry-based liquid-assisted synthesis of hydrophobic Zr-Beta with high metal loading for Meerwein-Ponndorf-Verley reduction" . | JOURNAL OF CATALYSIS 431 (2024) .
APA Zhang, Hongwei , Jaenicke, Stephan , Okumura, Kazu , Tan, Hui-Ru , Chuah, Gaik-Khuan . Mechanochemistry-based liquid-assisted synthesis of hydrophobic Zr-Beta with high metal loading for Meerwein-Ponndorf-Verley reduction . | JOURNAL OF CATALYSIS , 2024 , 431 .
Export to NoteExpress RIS BibTex

Version :

Designing Brønsted acidic sites on mesoporous polymers for enhanced capture of low-content ammonia SCIE
期刊论文 | 2024 , 292 | CHEMICAL ENGINEERING SCIENCE
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

A series of mesoporous polymers functionalized with different kinds and contents of Br & oslash; nsted acidic sites were designed and synthesized for NH 3 capture. The textural properties, morphologies and chemical structures of synthesized mesoporous polymers were characterized in details, and the NH 3 capture performance was evaluated systematically. It is found that the mesoporous polymers functionalized with phosphoric sites exhibit much better NH 3 capture performance at low pressures than those with carboxylic and sulfonic sites. Specifically, the NH 3 adsorption capacities of P(DVB-VPA)-4.0 can reach 4.82 mmol/g at 298.2 K and 0.033 bar. The excellent ability of P(DVB-VPA)-4.0 for selectively adsorbing low -content NH 3 from NH 3 /N 2 /H 2 and NH 3 /N 2 /CO 2 mixed gases was demonstrated by breakthrough experiments, and the adsorption of NH 3 by P(DVB-VPA)-4.0 is found to be mostly reversible. The thermodynamic properties and mechanism of NH 3 adsorption were also examined in depth, disclosing the important role of Br & oslash; nsted acidic sites in enhanced capture of low -content NH 3 by P(DVBVPA)-4.0.

Keyword :

Acid -base interaction Acid -base interaction Br & oslash;nsted acidic site Br & oslash;nsted acidic site Low content Low content Mesoporous polymer Mesoporous polymer NH 3 capture NH 3 capture

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zheng, Lu , Shi, Leilian , Li, Qiuke et al. Designing Brønsted acidic sites on mesoporous polymers for enhanced capture of low-content ammonia [J]. | CHEMICAL ENGINEERING SCIENCE , 2024 , 292 .
MLA Zheng, Lu et al. "Designing Brønsted acidic sites on mesoporous polymers for enhanced capture of low-content ammonia" . | CHEMICAL ENGINEERING SCIENCE 292 (2024) .
APA Zheng, Lu , Shi, Leilian , Li, Qiuke , Zhang, Hongwei , Cai, Zhenping , Huang, Kuan et al. Designing Brønsted acidic sites on mesoporous polymers for enhanced capture of low-content ammonia . | CHEMICAL ENGINEERING SCIENCE , 2024 , 292 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 6 >

Export

Results:

Selected

to

Format:
Online/Total:571/13572926
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1