• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:邱挺

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 35 >
A green synthesis route of cyclohexanol via transesterification reaction intensified by reactive distillation technology SCIE
期刊论文 | 2024 , 442 | JOURNAL OF CLEANER PRODUCTION
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

With the increasing demand of cyclohexanol in nylon industry, it is significant to develop a safe, green and economical process to produce cyclohexanol. For this purpose, a novel reactive distillation process through cyclohexyl acetate transesterification with methanol was proposed in this work. The NKC-9 catalyst was preferred to establish the reaction kinetic model based on pseudo-homogeneous model. Seven reactive distillation experiments with pilot-scale for cyclohexanol synthesis were explored to prove feasibility of reactive distillation processes and accuracy of model by comparing simulated results, which ensured the establishment of the process simulation. Furthermore, three reactive distillation processes of cyclohexanol production were designed and optimized by the sequential iterative algorithm based on minimum total annual cost. After optimization of pressure and recycled stream flow, a novel double column of reactive and pressure-swing hybrid distillation process showed the minimized total annual cost per ton product, which was 170.90 $/kg. Finally, total annual cost of transesterification, hydrolysis and hydrogenation processes were compared, and transesterification process demonstrated economic advantage. This work would provide a guidance for cyclohexanol green production by reactive distillation through cyclohexyl acetate transesterification, while a whole, economical and atomic economical reactive distillation process of cyclohexanol production could be established in the future.

Keyword :

Cyclohexanol Cyclohexanol Process intensification Process intensification Reaction kinetics Reaction kinetics Reactive distillation Reactive distillation Transesterification Transesterification

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Hou, Zhengkun , Geng, Xueli , Ding, Qiuyan et al. A green synthesis route of cyclohexanol via transesterification reaction intensified by reactive distillation technology [J]. | JOURNAL OF CLEANER PRODUCTION , 2024 , 442 .
MLA Hou, Zhengkun et al. "A green synthesis route of cyclohexanol via transesterification reaction intensified by reactive distillation technology" . | JOURNAL OF CLEANER PRODUCTION 442 (2024) .
APA Hou, Zhengkun , Geng, Xueli , Ding, Qiuyan , Li, Hong , Guo, Yaocong , Qiu, Ting et al. A green synthesis route of cyclohexanol via transesterification reaction intensified by reactive distillation technology . | JOURNAL OF CLEANER PRODUCTION , 2024 , 442 .
Export to NoteExpress RIS BibTex

Version :

Engineering customized nanovaccines for enhanced cancer immunotherapy SCIE CSCD
期刊论文 | 2024 , 36 , 330-357 | BIOACTIVE MATERIALS
WoS CC Cited Count: 4
Abstract&Keyword Cite

Abstract :

Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.

Keyword :

Customized structure Customized structure Enhanced cancer immunotherapy Enhanced cancer immunotherapy Nanovaccines Nanovaccines Prophylactic and therapeutic applications Prophylactic and therapeutic applications Tailored-ligand Tailored-ligand

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Guo, Jinyu , Liu, Changhua , Qi, Zhaoyang et al. Engineering customized nanovaccines for enhanced cancer immunotherapy [J]. | BIOACTIVE MATERIALS , 2024 , 36 : 330-357 .
MLA Guo, Jinyu et al. "Engineering customized nanovaccines for enhanced cancer immunotherapy" . | BIOACTIVE MATERIALS 36 (2024) : 330-357 .
APA Guo, Jinyu , Liu, Changhua , Qi, Zhaoyang , Qiu, Ting , Zhang, Jin , Yang, Huanghao . Engineering customized nanovaccines for enhanced cancer immunotherapy . | BIOACTIVE MATERIALS , 2024 , 36 , 330-357 .
Export to NoteExpress RIS BibTex

Version :

Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5 SCIE
期刊论文 | 2024 , 239 (4) , 611-612 | ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

C16H14O5, monoclinic, P21/c (no. 14), a = 11.1420(17) & Aring;, b = 8.4700(12) & Aring;, c = 15.429(2) & Aring;, beta = 104.624(4)degrees, V = 1408.9(4) & Aring;3, Z = 4, Rgt(F) = 0.0513, wRref(F2) = 0.1243, T = 296(2) K.

Keyword :

2334088 2334088

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Huang, Shiyin , Yin, Minlei , Lin, Yuxin et al. Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5 [J]. | ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES , 2024 , 239 (4) : 611-612 .
MLA Huang, Shiyin et al. "Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5" . | ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES 239 . 4 (2024) : 611-612 .
APA Huang, Shiyin , Yin, Minlei , Lin, Yuxin , Yang, Heyi , Chen, Jie , Qiu, Ting . Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5 . | ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES , 2024 , 239 (4) , 611-612 .
Export to NoteExpress RIS BibTex

Version :

Trace Cu (II) removal from N-methylpyrrolidone with hydrogel rich in O, N and S active sites EI
期刊论文 | 2024 , 337 | Separation and Purification Technology
Abstract&Keyword Cite

Abstract :

The presence of a considerable quantity of metal ions in N-methylpyrrolidone (NMP) applied for the cleaning of electronic devices, especially chips, results in a breakdown effect, thus affecting their overall durability and performance. Here, hydrogel that rich in O, N, and S active sites was prepared, which can effectively remove trace amounts of Cu (II) from N-methylpyrrolidone. The material was synthesized through a one-pot crosslinking and ion exchange method and is named SLH. The physicochemical properties and adsorption experiments were conducted. It was found that SLH-2 exhibited outstanding Langmuir maximum adsorption capacity of 136.99 mg/g at an initial Cu (II) concentration of 200 mg/L. By utilizing SLH-2 in electronic grade adsorption experiments, concentration of trace Cu (II) decreased from 12.3 μg/L to 5.39 μg/L. Additionally, concentration of Zn, Fe, Mg, and Ni significantly reduced to less than 1 μg/L, with –NH2 and –COOH playing crucial roles in the adsorption process. The research results indicate that predominant adsorption mechanisms are surface coordination and ion exchange. The adsorption energy between active functional groups and Cu (II) was calculated using density functional theory (DFT), revealing an affinity order of –COOH > –SO3H > –NH2 > –OH. This work not only developed an adsorbent for capturing trace Cu (II), but also provided new strategies for the removal of metal ions in wet chemicals. © 2024 Elsevier B.V.

Keyword :

Adsorption Adsorption Copper compounds Copper compounds Density functional theory Density functional theory Hydrogels Hydrogels Ion exchange Ion exchange Metal ions Metal ions Physicochemical properties Physicochemical properties Trace elements Trace elements

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Chang, Zhouxin , Zhang, Jiamei , Ye, Changshen et al. Trace Cu (II) removal from N-methylpyrrolidone with hydrogel rich in O, N and S active sites [J]. | Separation and Purification Technology , 2024 , 337 .
MLA Chang, Zhouxin et al. "Trace Cu (II) removal from N-methylpyrrolidone with hydrogel rich in O, N and S active sites" . | Separation and Purification Technology 337 (2024) .
APA Chang, Zhouxin , Zhang, Jiamei , Ye, Changshen , Chen, Jie , Qi, Zhaoyang , Wang, Qinglian et al. Trace Cu (II) removal from N-methylpyrrolidone with hydrogel rich in O, N and S active sites . | Separation and Purification Technology , 2024 , 337 .
Export to NoteExpress RIS BibTex

Version :

Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis SCIE
期刊论文 | 2024 , 482 | CHEMICAL ENGINEERING JOURNAL
Abstract&Keyword Cite

Abstract :

Catalytic distillation is an effective and important technology for low-temperature dehydrogenation of perhydrobenzyltoluene (H12-BT). However, current researches have unfortunately failed to comprehensively understand the reaction and separation processes, hindering the broader application of catalytic distillation dehydrogenation technology. Therefore, in the study, a comprehensive dehydrogenation reaction kinetic model that accounts for the influence of the intermediate H6-BT was established firstly. Subsequently, the vapor-liquid equilibrium data for the binary systems H12-BT + H6-BT and H6-BT + H0-BT was estimated by utilizing the UNIFAC model, so as to obtain the azeotropes. By developing a modified catalytic distillation model, the catalytic distillation dehydrogenation process was examined. Our exploration revealed the existence of an optimal degree of dehydrogenation value, namely 0.8, within the catalytic distillation dehydrogenation process, yielding an approximate 23.8 % reduction in unit H2 production cost in comparison to the fully dehydrogenation case. Our findings contribute valuable insights that have the potential to promote the overall development of the hydrogen energy economy.

Keyword :

Catalytic distillation Catalytic distillation Degree of dehydrogenation Degree of dehydrogenation Dehydrogenation process Dehydrogenation process Perhydro-benzyltoluene Perhydro-benzyltoluene Reaction kinetic Reaction kinetic

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Qinglian , Le, Keyu , Lin, Yi et al. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis [J]. | CHEMICAL ENGINEERING JOURNAL , 2024 , 482 .
MLA Wang, Qinglian et al. "Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis" . | CHEMICAL ENGINEERING JOURNAL 482 (2024) .
APA Wang, Qinglian , Le, Keyu , Lin, Yi , Yin, Wang , Lin, Yixiong , Alekseeva, Maria, V et al. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis . | CHEMICAL ENGINEERING JOURNAL , 2024 , 482 .
Export to NoteExpress RIS BibTex

Version :

The integrated microfluidic photocatalytic planar reactor under continuous operation ESCI
期刊论文 | 2024 , 6 | FRONTIERS IN CHEMICAL ENGINEERING
Abstract&Keyword Cite

Abstract :

An integrated microfluidic planar reactor is essential for achieving efficient and enhanced photocatalytic water treatment. Optimization of catalysts is an area of intense study owing to the need to enhance the performances of microreactors. A high-efficiency photocatalytic microreactor is presented here by combining a planar microreactor with a high-efficiency photocatalyst. TiO2 nanoparticles doped with Y and Yb were prepared to improve the photocatalytic reaction efficiency. First, better performance is achieved with the Y, Yb/TiO2 and TiO2 microreactors than conventional bulk reactors because of good photodegradation and a high reaction rate. Then, the Y, Yb/TiO2 film microreactor exhibits not only efficient catalytic activity with UV light but also higher photocatalytic activity under visible light irradiation than that achieved by a TiO2 film microreactor. The reaction rate constant of the Y, Yb/TiO2 film microreactor is approximately 0.530 s(-1), which is twice that of the TiO2 film microreactor. Moreover, the performances under continuous and intermittent reactions are compared to evaluate the stability of the microreactor, thereby building the foundation for practical application of continuous water treatment in the microreactor.The planar microreactor provides a convenient platform for studying photodegradation under various conditions, such as different temperatures, flow rates, light irradiation (UV and Vis), and reaction modes (continuous and intermittent).

Keyword :

continuous water treatment continuous water treatment microreactor microreactor photodegradation photodegradation stability stability TiO2 TiO2

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Ge, Xue-hui , Wei, Nanjie , Hu, Xinyue et al. The integrated microfluidic photocatalytic planar reactor under continuous operation [J]. | FRONTIERS IN CHEMICAL ENGINEERING , 2024 , 6 .
MLA Ge, Xue-hui et al. "The integrated microfluidic photocatalytic planar reactor under continuous operation" . | FRONTIERS IN CHEMICAL ENGINEERING 6 (2024) .
APA Ge, Xue-hui , Wei, Nanjie , Hu, Xinyue , Xie, Qinyin , Wang, Xiaoda , Li, Ling et al. The integrated microfluidic photocatalytic planar reactor under continuous operation . | FRONTIERS IN CHEMICAL ENGINEERING , 2024 , 6 .
Export to NoteExpress RIS BibTex

Version :

Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials SCIE
期刊论文 | 2024 , 368 | FUEL
Abstract&Keyword Cite

Abstract :

Catalytic hydrotreatment is one of the promising routes for upgrading pyrolysis liquids (PLs) to intermediates that can be co-fed with vacuum gas oil for FCC refinery. Among all the factors, catalysts are always crucial in catalytic hydrotreatment of PLs as hydrogenation and repolymerization reactions occur in parallel. Therefore, catalysts with sufficient hydrogenation activity are generally required to enhance the hydrogenation reaction and to inhibit the repolymerization reaction of the thermally liable compounds in PLs. Among all noble metal catalysts tested, Ru/C catalysts showed a better performance than other catalysts in terms of the oil yield and deoxygenation level. However, a clear repolymerization was observed during catalytic hydrotreatment of PLs using Ru/C catalysts, especially during mild hydrotreatment, thus there is still ample room for their activity improvement. Here, a series of Ru-based catalysts supported on nitrogen-doped carbon materials (NC) and activated carbon (AC) were prepared. The catalytic performance was evaluated for hydrotreatment of PLs in a batch autoclave (250 degrees C, 8 MPa H2, 4 h for mild hydrotreatment; 340 degrees C, 6 MPa H2, 4 h for deep hydrotreatment). The Ru catalyst supported on nitrogen-doped carbon materials, obtained by the polyol reduction method with polyvinylpyrrolidone (PVP) as the protective agent (Ru/NC (PVP)), showed a better performance (in terms of product oil properties) than the other catalysts investigated in this work, due to a good distribution of the ruthenium nanoparticles. For mild hydrotreatment the H/C ratio, O/C ratio and MCRT value were 1.42, 0.37 and 9.9 wt%, respectively. For deep hydrotreatment the H/C ratio, O/C ratio and MCRT value were 1.26, 0.16 and 4.6 wt%. The comparison with results published earlier for other hydrotreatment catalysts is satisfactory but also shows room for further improvement. GC-MS and 1H NMR results showed that the contents of thermal liable components like aldehydes (16.7 %), ketones (24.3 %) and sugars (4.0 %) in PLs were quantitatively converted under mild hydrotreatment, while phenols and alkanes significantly increased from 35.9 %, 0 % to 49.1 %, 35.3 %, respectively, especially for deep hydrotreatment compared with PLs feed. The catalyst characterization revealed that Ru/NC (PVP) with the most uniform dispersion and the smallest average particle size (1.5 nm), rendered the best performance. These findings indicate that Ru/NC (PVP) catalyst is a promising candidate for the catalytic hydrotreatment of PLs.

Keyword :

Biomass Biomass Catalytic hydrotreatment Catalytic hydrotreatment Fast pyrolysis Fast pyrolysis Pyrolysis liquids Pyrolysis liquids rials rials Ru supported on nitrogen -doped carbon mate Ru supported on nitrogen -doped carbon mate

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Xia, Yunhui , Xi, Nan , Yu, Xinyang et al. Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials [J]. | FUEL , 2024 , 368 .
MLA Xia, Yunhui et al. "Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials" . | FUEL 368 (2024) .
APA Xia, Yunhui , Xi, Nan , Yu, Xinyang , Luo, Maohua , Chen, Shi , Wang, Qinglian et al. Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials . | FUEL , 2024 , 368 .
Export to NoteExpress RIS BibTex

Version :

Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure EI
期刊论文 | 2024 , 494 | Chemical Engineering Journal
Abstract&Keyword Cite

Abstract :

Compressing metal foam flow field usually causes a higher pressure drop and uncontrollable pore structure while enhancing the water discharge capability of proton exchange membrane fuel cell (PEMFC). To further enhance the water discharge capability of metal foam flow field at a low cost of pressure drop, a novel metal foam flow field exhibiting hierarchical pore structure(dcoarse/dfine=2; Vcoarse/Vfine=1; dfine=0.5 mm) is first introduced. This work numerically investigates water management characteristics and output performance of novel metal foam flow field. Subsequently, 3D printing technology is employed to precisely manufacture metal foam flow fields, which are compared with several flow fields in the cathode side experimentally. Experimental results demonstrate that at 1.5 A/cm2 during 3 h, the amount of water discharge in metal foam flow field with hierarchical pore structure is close to parallel flow field, which is 1.12 times and 1.30 times that in metal foam flow field with uniform coarse pore and uniform fine pore, respectively. Moreover, compared with the previous optimized strategy, namely metal foam flow field with 75 PPI and a compression rate of 0.75, metal foam flow field with hierarchical pore structure can not only improve the maximum net power density by 9.5 % and water discharge amount by 14.1 %, but also decrease two-thirds of the pressure drop in the cathode side. This research lays the theoretical groundwork and offers technical insight for the implementation of metal foam flow fields in PEMFCs. © 2024 Elsevier B.V.

Keyword :

3D printing 3D printing Cathodes Cathodes Drops Drops Flow fields Flow fields Metal foams Metal foams Parallel flow Parallel flow Pore structure Pore structure Pressure drop Pressure drop Proton exchange membrane fuel cells (PEMFC) Proton exchange membrane fuel cells (PEMFC) Water management Water management

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Sun, Yun , Lin, Yixiong , Wan, Zhongmin et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure [J]. | Chemical Engineering Journal , 2024 , 494 .
MLA Sun, Yun et al. "Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure" . | Chemical Engineering Journal 494 (2024) .
APA Sun, Yun , Lin, Yixiong , Wan, Zhongmin , Wang, Qinglian , Yang, Chen , Yin, Wang et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure . | Chemical Engineering Journal , 2024 , 494 .
Export to NoteExpress RIS BibTex

Version :

Challenges and perspectives on using acidic ionic liquids for biodiesel production via reactive distillation SCIE
期刊论文 | 2024 , 26 (13) , 7718-7731 | GREEN CHEMISTRY
Abstract&Keyword Cite

Abstract :

Biodiesel, known as a renewable fuel, is an environmentally friendly energy source derived from animal and vegetable oils, as well as recycled oil. Despite this, the current advancements in biodiesel technology face challenges in fully replacing petrochemical diesel, primarily due to the non-green catalytic synthesis and high production cost associated with biodiesel. Ionic liquids containing strong Lewis acids or BrOnsted acids have been highlighted as a novel class of environmentally friendly solvents and catalysts, showing green and effective catalytic potential in the synthesis of biodiesel via transesterification. In another aspect, reactive distillation technology could facilitate continuous forward reactions catalyzed by ionic liquids by swiftly removing reaction products from the reaction zone, offering advantages in improving the production efficiency, energy consumption, and cost reduction. From this perspective, we discuss the synthesis of biodiesel catalyzed by ionic liquids, supported ionic liquids, amphiphilic ionic liquids, and amphiphilic supported ionic liquids. The focus is on the process for synthesizing biodiesel through catalytic distillation. We emphasize the potential role of the lipophilic group in the ionic liquid catalyst, promoting the mutual solubility of the reactant triglyceride with methanol or ethanol. This enhancement might facilitate contact between the reactants and improve the catalytic efficiency of transesterification. Additionally, we propose several methods to improve the efficiency of biodiesel synthesis catalyzed by ionic liquid catalysts and suggest appropriate reactive distillation processes for biodiesel production.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Qi, Zhaoyang , Cui, Rongkai , Lin, Hao et al. Challenges and perspectives on using acidic ionic liquids for biodiesel production via reactive distillation [J]. | GREEN CHEMISTRY , 2024 , 26 (13) : 7718-7731 .
MLA Qi, Zhaoyang et al. "Challenges and perspectives on using acidic ionic liquids for biodiesel production via reactive distillation" . | GREEN CHEMISTRY 26 . 13 (2024) : 7718-7731 .
APA Qi, Zhaoyang , Cui, Rongkai , Lin, Hao , Ye, Changshen , Chen, Jie , Qiu, Ting . Challenges and perspectives on using acidic ionic liquids for biodiesel production via reactive distillation . | GREEN CHEMISTRY , 2024 , 26 (13) , 7718-7731 .
Export to NoteExpress RIS BibTex

Version :

Revealing the mechanism behind the highly selective separation of 1,4-butyrolactone from n-methylpyrrolidone using nonporous adaptive crystals of perethylated pillar[5]arene Scopus
期刊论文 | 2024 , 495 | Chemical Engineering Journal
Abstract&Keyword Cite

Abstract :

N-Methylpyrrolidone is widely used across various sectors; however, the energy-efficient removal of 1,4-butyrolactone impurity from NMP remains a significant challenge due to their nearly identical molecular size and properties. Herein, we synthesize a series of flexible molecular materials, perethylated pillar[n]arene (n = 5, 6) with enhanced crystallization efficiency under the induce of dichloromethane solvent. Through a size-specific recognition and varied host–guest interaction, EtP5 demonstrates exceptional 99 % selectivity for GBL against NMP; single-crystal structure analyses and theoretical calculations unveil intricate C-H···O hydrogen bonding interactions, and π-π stacking interactions between EtP5 and GBL. The single-crystal structure of the two-guest complexes has proved the existence of adsorption transition states, and it comprehensively elucidates the dynamic adsorption process of EtP5 with GBL, supported by theoretical calculations. Reuse experiments validate these crystals could be fully reused without loss of performance. © 2024 Elsevier B.V.

Keyword :

1,4-Butyrolactone 1,4-Butyrolactone Adsorption mechanism Adsorption mechanism N-Methylpyrrolidone N-Methylpyrrolidone Perethylated pillar[5]arene Perethylated pillar[5]arene

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yin, M. , Yang, C. , Tang, D. et al. Revealing the mechanism behind the highly selective separation of 1,4-butyrolactone from n-methylpyrrolidone using nonporous adaptive crystals of perethylated pillar[5]arene [J]. | Chemical Engineering Journal , 2024 , 495 .
MLA Yin, M. et al. "Revealing the mechanism behind the highly selective separation of 1,4-butyrolactone from n-methylpyrrolidone using nonporous adaptive crystals of perethylated pillar[5]arene" . | Chemical Engineering Journal 495 (2024) .
APA Yin, M. , Yang, C. , Tang, D. , Huang, S. , Lou, X. , Cui, R. et al. Revealing the mechanism behind the highly selective separation of 1,4-butyrolactone from n-methylpyrrolidone using nonporous adaptive crystals of perethylated pillar[5]arene . | Chemical Engineering Journal , 2024 , 495 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 35 >

Export

Results:

Selected

to

Format:
Online/Total:129/7275093
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1