Query:
学者姓名:吕源财
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
The production of isolated metallic nanoparticles with multifunctionalized properties, such as size and shape, is crucial for biomedical, photocatalytic, and energy storage or remediation applications. This study investigates the initial particle formations of gold nanoparticles (AuNPs) bioproduced in the cyanobacteria Anabaena sp. using high-resolution transmission electron microscopy images for digital image analysis. The developed method enabled the discovery of cerium nanoparticles (CeNPs), which were biosynthesized in the cyanobacteria Calothrix desertica. The particle size distributions for AuNPs and CeNPs were analyzed. After 10 h, the average equivalent circular diameter for AuNPs was 4.8 nm, while for CeNPs, it was approximately 5.2 nm after 25 h. The initial shape of AuNPs was sub-round to round, while the shape of CeNPs was more roundish due to their amorphous structure and formation restricted to heterocysts. The local PSDs indicate that the maturation of AuNPs begins in the middle of vegetative cells and near the cell membrane, compared to the other regions of the cell.
Keyword :
Anabaena sp. Anabaena sp. biorecovery biorecovery biosynthesis biosynthesis Calothrix desertica Calothrix desertica digital image analysis digital image analysis TEM TEM
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Fritz, Melanie , Chen, Xiaochen , Yang, Guifang et al. Gold Nanoparticles Bioproduced in Cyanobacteria in the Initial Phase Opened an Avenue for the Discovery of Corresponding Cerium Nanoparticles [J]. | MICROORGANISMS , 2024 , 12 (2) . |
MLA | Fritz, Melanie et al. "Gold Nanoparticles Bioproduced in Cyanobacteria in the Initial Phase Opened an Avenue for the Discovery of Corresponding Cerium Nanoparticles" . | MICROORGANISMS 12 . 2 (2024) . |
APA | Fritz, Melanie , Chen, Xiaochen , Yang, Guifang , Lv, Yuancai , Liu, Minghua , Wehner, Stefan et al. Gold Nanoparticles Bioproduced in Cyanobacteria in the Initial Phase Opened an Avenue for the Discovery of Corresponding Cerium Nanoparticles . | MICROORGANISMS , 2024 , 12 (2) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Developing the Co-based catalysts with high reactivity for the sulfate radical (SO4−·)–based advanced oxidation processes (SR-AOPs) has been attracting numerous attentions. To improve the peroxymonosulfate (PMS) activation process, a novel Co-based catalyst simultaneously modified by bamboo carbon (BC) and vanadium (V@CoO-BC) was fabricated through a simple solvothermal method. The atenolol (ATL) degradation experiments in V@CoO-BC/PMS system showed that the obtained V@CoO-BC exhibited much higher performance on PMS activation than pure CoO, and the V@CoO-BC/PMS system could fully degrade ATL within 5 min via the destruction of both radicals (SO4−· and O2−··) and non-radicals (1O2). The quenching experiments and electrochemical tests revealed that the enhancing mechanism of bamboo carbon and V modification involved four aspects: (i) promoting the PMS and Co ion adsorption on the surface of V@CoO-BC; (ii) enhancing the electron transfer efficiency between V@CoO-BC and PMS; (iii) activating PMS with V3+ species; (iv) accelerating the circulation of Co2+ and Co3+, leading to the enhanced yield of reactive oxygen species (ROS). Furthermore, the V@CoO-BC/PMS system also exhibited satisfactory stability under broad pH (3–9) and good efficiency in the presence of co-existing components (HCO3−, NO3−, Cl−, and HA) in water. This study provides new insights to designing high-performance, environment-friendly bimetal catalysts and some basis for the remediation of antibiotic contaminants with SR-AOPs. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Keyword :
Antibiotic degradation Antibiotic degradation Biochar modification Biochar modification Co-based catalyst Co-based catalyst Peroxymonosulfate activation Peroxymonosulfate activation V modification V modification
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Hu, Y. , Yang, K. , Lin, Y. et al. Performance and mechanistic studies of rapid atenolol degradation through peroxymonosulfate activation by V, Co, and bamboo carbon catalyst [J]. | Environmental Science and Pollution Research , 2024 , 31 (25) : 36761-36777 . |
MLA | Hu, Y. et al. "Performance and mechanistic studies of rapid atenolol degradation through peroxymonosulfate activation by V, Co, and bamboo carbon catalyst" . | Environmental Science and Pollution Research 31 . 25 (2024) : 36761-36777 . |
APA | Hu, Y. , Yang, K. , Lin, Y. , Weng, X. , Jiang, Y. , Huang, J. et al. Performance and mechanistic studies of rapid atenolol degradation through peroxymonosulfate activation by V, Co, and bamboo carbon catalyst . | Environmental Science and Pollution Research , 2024 , 31 (25) , 36761-36777 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
以纤维素为原料,在Na OH/尿素/H2O溶解体系中通过交联作用将橡椀单宁固化在纤维素基体上,制得固化橡椀单宁纤维素基气凝胶(VTCA).通过SEM-EDS、FT-IR、XRD等对VTCA进行表征,并研究其对水溶液中Ag(I)的吸附行为.结果表明,VTCA具有明显的三维网格多孔结构,孔隙率达到97.95%,在较宽的p H范围内(1~8)对Ag(I)均保持较高的吸附效率(>75%).吸附过程符合拟二级动力学模型和Langmuir吸附等温线模型,温度升高有利于吸附,最高理论吸附量为147.2mg/g.吸附还原研究机理表明,VTCA主要通过静电吸引和螯合作用将Ag(I)吸附到其表面,并通过单宁结构上的酚羟基将其原位还原为Ag0,证明VTCA具有良好的吸附还原性能,能够实现对水体中Ag(I)的回收.
Keyword :
Ag(I) Ag(I) 吸附 吸附 橡椀单宁 橡椀单宁 纤维素基气凝胶 纤维素基气凝胶 还原 还原
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 陈颖 , 林昱灵 , 吕源财 et al. 固化单宁纤维素基气凝胶吸附还原Ag(I)行为研究 [J]. | 中国环境科学 , 2024 , 44 (04) : 2083-2092 . |
MLA | 陈颖 et al. "固化单宁纤维素基气凝胶吸附还原Ag(I)行为研究" . | 中国环境科学 44 . 04 (2024) : 2083-2092 . |
APA | 陈颖 , 林昱灵 , 吕源财 , 刘以凡 , 林春香 , 叶晓霞 et al. 固化单宁纤维素基气凝胶吸附还原Ag(I)行为研究 . | 中国环境科学 , 2024 , 44 (04) , 2083-2092 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
采用纤维素/杨梅单宁复合气凝胶(CBT)为载体,用浸渍和原位还原法制备铁负载纤维素/单宁吸附剂(Fe-CBT),使用扫描电镜、傅里叶红外光谱和X射线能谱等手段对其表征,研究了三种典型氟喹诺酮类(FQs)抗生素诺氟沙星(NOR)、盐酸洛美沙星(LOM)和盐酸左氧氟沙星(LVX)的静态吸附性能。结果表明:共存阳离子Na~+、K~+、Mg~(2+)和Ca~(2+)都对吸附过程有明显的干扰。吸附过程是自发进行的放热反应,主要为单分子层吸附,而化学吸附是主要的限速步骤。准二级和Langmuir模型能很好地拟合这种吸附行为。这种吸附剂在298 K对NOR、LOM和LVX的最大理论吸附量分别达到99.07、74.17和40.14 mg/g。NaOH和NaCl对Fe-CBT都表现出较优的洗脱效果,用NaOH和NaCl溶液4次再生后Fe-CBT对NOR的吸附能力仍高于70%。Fe-CBT对FQs的去除,主要是静电引力、表面络合、氢键和π-π堆积间的协同作用造成的。
Keyword :
单宁 单宁 吸附 吸附 有机高分子材料 有机高分子材料 氟硅诺酮类抗生素 氟硅诺酮类抗生素 纤维素复合气凝胶 纤维素复合气凝胶 铁负载 铁负载
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 翁鑫 , 李琦琪 , 杨桂芳 et al. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能 [J]. | 材料研究学报 , 2024 , 38 (02) : 92-104 . |
MLA | 翁鑫 et al. "铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能" . | 材料研究学报 38 . 02 (2024) : 92-104 . |
APA | 翁鑫 , 李琦琪 , 杨桂芳 , 吕源财 , 刘以凡 , 刘明华 . 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能 . | 材料研究学报 , 2024 , 38 (02) , 92-104 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The absorbent of Fe-loaded cellulose/bayberry tannin (Fe-CBT) was prepared via impregnation and in-situ reduction process, with cellulose/tannin composite aerogel (CBT) as the carrier, which then was characterized by means of scanning electron microscopy, Fourier infrared spectroscopy and Х-ray energy dispersive spectroscopy. Afterwards, the adsorption characteristic of the Fe-CBT was comparatively assessed for three typical fluoroquinolones (FQs) antibiotics, i.e., norfloxacin (NOR), lomefloxacin hydrochloride (LOM) and levofloxacin hydrochloride (LVХ). The results show that the coexistence of cations Na+, K+, Mg2+ and Ca2+ all interferes significantly with the adsorption process. Moreover, the adsorption process is an exothermic reaction that proceeds spontaneously, mainly as single-molecule layer adsorption, of which chemisorption is the main rate-limiting step. The quasi-secondary and Langmuir models are demonstrated to fit this adsorption behavior, and the maximum theoretical adsorption capacity of 99.07, 74.17 and 40.14 mg/g can be achieved for NOR, LOM and LVХ at 298 K, respectively. Both NaOH and NaCl show superior elution effect on Fe-CBT, namely, after re-generation for four times with NaOH and NaCl solutions, the adsorption capacity of Fe-CBT on NOR could even be maintained > 70%. In addition, it is found that the removal of FQs by Fe-CBT is caused by the synergy between electrostatic gravitation, surface complexation, hydrogen bonding and π-π stacking. © 2024 Chinese Journal of Materials Research. All rights reserved.
Keyword :
Adsorption Adsorption Aerogels Aerogels Antibiotics Antibiotics Cellulose Cellulose Energy dispersive spectroscopy Energy dispersive spectroscopy Flavonoids Flavonoids Hydrogen bonds Hydrogen bonds Infrared spectroscopy Infrared spectroscopy Scanning electron microscopy Scanning electron microscopy Sodium chloride Sodium chloride Sodium hydroxide Sodium hydroxide Tannins Tannins
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Weng, Xin , Li, Qiqi , Yang, Guifang et al. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics [J]. | Chinese Journal of Materials Research , 2024 , 38 (2) : 92-104 . |
MLA | Weng, Xin et al. "Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics" . | Chinese Journal of Materials Research 38 . 2 (2024) : 92-104 . |
APA | Weng, Xin , Li, Qiqi , Yang, Guifang , Lv, Yuancai , Liu, Yifan , Liu, Minghua . Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics . | Chinese Journal of Materials Research , 2024 , 38 (2) , 92-104 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
C. pyrenoidosa , a species of microalgae, has been recognized as a viable protein source for human consumption. The primary challenges in this context are the development of an efficient extraction process and the valorization of the resultant waste streams. This study, situated within the paradigm of circular economy, presents an innovative extraction approach that achieved a protein extraction efficiency of 62 %. The extracted protein exhibited remarkable oil - water emulsifying performances, such as uniform morphology with high creaming stability, suggesting a sustainable alternative to conventional emulsifiers. Additionally, hydrothermal liquefaction technique was employed for converting the residual biomass and waste solution from the extraction process into biocrude. A biocrude yield exceeding 40 wt%, characterized by a carbon content of 73 % and a higher heating value of 36 MJ/kg, were obtained. These findings demonstrate the promising potential of microalgae biorefinery, which is significant for paving toward circular economy and zero -waste society.
Keyword :
Circular economy Circular economy Emulsifier Emulsifier Hydrothermal liquefaction Hydrothermal liquefaction Microalgae biorefinery Microalgae biorefinery Value-added products Value-added products
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Zijing , Ye, Wangfang , Wu, Yijing et al. Protein extraction from chlorella pyrenoidosa microalgae: Green methodologies, functional assessment, and waste stream valorization for bioenergy production [J]. | BIORESOURCE TECHNOLOGY , 2024 , 397 . |
MLA | Wang, Zijing et al. "Protein extraction from chlorella pyrenoidosa microalgae: Green methodologies, functional assessment, and waste stream valorization for bioenergy production" . | BIORESOURCE TECHNOLOGY 397 (2024) . |
APA | Wang, Zijing , Ye, Wangfang , Wu, Yijing , Lin, Xiaoyu , Luan, Cuirong , Xie, Xiaowei et al. Protein extraction from chlorella pyrenoidosa microalgae: Green methodologies, functional assessment, and waste stream valorization for bioenergy production . | BIORESOURCE TECHNOLOGY , 2024 , 397 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
An annual production of about 500 million tons of household food waste (HFW) has been documented, resulting in significant implications for human health and the environment in the absence of appropriate treatment. The anaerobic fermentation of HFW in an open system offers the potential to recover high value-added products, lactic acid (LA), thereby simultaneously addressing waste treatment and enhancing resource recovery efficiency. Most of LA fermentation studies have been conducted under mesophilic and thermophilic conditions, with limited research on the production of LA through anaerobic fermentation under hyperthermophilic conditions. This study aimed to produce LA through anaerobic fermentation from HFW under hyperthermophilic conditions (70 +/- 1 degrees C), while varying pH values (5.0 +/- 0.1, 7.0 +/- 0.1, and 9.0 +/- 0.1), and compare the results with LA production under mesophilic (35 +/- 1 degrees C) and thermophilic (52 +/- 1 degrees C) conditions. The findings of this study indicated that the combination of hyperthermophilic conditions and a neutral pH (pH7_70) yielded the highest concentration of LA, measuring at 17.75 +/- 1.51 g/L. The mechanism underlying the high yield of LA at 70 degrees C was elucidated through the combined analysis of organics dissolution, enzymes activities, and 16S rRNA microbiome sequencing.
Keyword :
Anaerobic fermentation Anaerobic fermentation Household food waste Household food waste Hyperthermophilic condition Hyperthermophilic condition Lactic acid Lactic acid Lactobacillus Lactobacillus
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Song, Liang , Cai, Chenhang , Lin, Chunxiang et al. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation [J]. | WASTE MANAGEMENT , 2024 , 178 : 57-65 . |
MLA | Song, Liang et al. "Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation" . | WASTE MANAGEMENT 178 (2024) : 57-65 . |
APA | Song, Liang , Cai, Chenhang , Lin, Chunxiang , Lv, Yuancai , Liu, Yifan , Ye, Xiaoxia et al. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation . | WASTE MANAGEMENT , 2024 , 178 , 57-65 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Developing adsorbents with high performance and long service life for effective extracting the trace organochlorine pesticides (OCPs) from real water is attracting numerous attentions. Herein, a self-standing covalent organic framework (COF-TpPa) membrane with fiber morphology was successfully synthesized by using electrospun nanofiber membranes as template and employed as solid-phase microextraction (SPME) coating for ultra-high sensitivity extraction and analysis of trace OCPs in water. The as-synthesized COF-TpPa membrane exhibited a high specific surface area (800.83 m(2) g(-1)), stable nanofibrous structure, and excellent chemical and thermal stability. Based on the COF-TpPa membrane, a new SPME analytical method in conjunction with gas chromatography-mass spectrometry (GC-MS) was established. This proposed method possessed favorable linearity in concentration of 0.05-2000 ng L-1, high sensitivity with enrichment factors ranging from 2175 to 5846, low limits of detection (0.001-0.150 ng L-1), satisfactory precision (RSD < 10 %), and excellent repeatability (>150 cycles), which was better than most of the reported works. Additionally, the density functional theory (DFT) calculations and XPS results demonstrated that the outstanding enrichment performance of the COF-TpPa membrane was owing to synergistic effect of pi-pi stacking effects, high specific surface area and hydrogen bonding. This work will expect to extend the applications of COF membrane to captures trace organic pollutants in complex environmental water, as well as offer a multiscale interpretation for the design of effective adsorbents.
Keyword :
Covalent organic framework nanofibrous Covalent organic framework nanofibrous Direct immersion solid-phase microextraction Direct immersion solid-phase microextraction Gas chromatography-mass spectrometry Gas chromatography-mass spectrometry membrane membrane Organochlorine pesticides Organochlorine pesticides
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Chunxiang , Weng, Yufang , Lin, Yule et al. Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water [J]. | JOURNAL OF CHROMATOGRAPHY A , 2024 , 1721 . |
MLA | Lin, Chunxiang et al. "Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water" . | JOURNAL OF CHROMATOGRAPHY A 1721 (2024) . |
APA | Lin, Chunxiang , Weng, Yufang , Lin, Yule , Liu, Yifan , Li, Xiaojuan , Lv, Yuancai et al. Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water . | JOURNAL OF CHROMATOGRAPHY A , 2024 , 1721 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Developing the transition metal catalysts with high reactivity for the sulfate radical (SO4 -center dot) based advanced oxidation processes (SR-AOPs) has been attracting numerous attentions. To improve the peroxymonosulfate (PMS) activation process mediated by Co-based catalysts, a vanadium-cobalt bimetallic catalyst (V@CoO) was fabricated by modification vanadium through a simple solvothermal method. The pollutants degradation experiments showed that the obtained V@CoO exhibited much higher performance on PMS activation (5.55-8.33 times larger of apparent rate constants) than pure CoO, and the V@CoO/PMS system could quickly degrade various organic contaminants within 5 min under the attack of both radicals (SO4 -center dot and O2-center dot) and non-radicals (1O2). The density functional theory (DFT) calculations and electrochemical tests revealed that the enhancing mechanism of V modification involved four aspects: (i) promoting the PMS adsorption on the surface of V@CoO; (ii) enhancing the electron transfer efficiency between V@CoO and PMS; (iii) activating PMS with V3+ and V4+ species; (iv) accelerating the circulation of Co2+ and Co3+, leading to the promotion on the production of reactive oxygen species (ROS). Furthermore, the V@CoO/PMS system also exhibited satisfactory stability in a broad pH range and good efficiency in the presence of co-existing components (HCO3-, NO3-, PO43- , Cl- and HA) in water. This study will provide new insights to designing high-performance, environment-friendly bimetal catalysts and some basis for the remediation of organic contaminants with SR-AOPs.
Keyword :
Co-based catalyst Co-based catalyst Degradation Degradation Organic pollutants Organic pollutants Peroxymonosulfate activation Peroxymonosulfate activation V modification V modification
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Jiang, Yanting , Weng, Xin , Hu, Yihui et al. Enhanced peroxymonosulfate (PMS) activation process mediated by vanadium modified CoO catalyst for rapid degradation of organic pollutants: Insights into the role of V [J]. | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING , 2024 , 12 (2) . |
MLA | Jiang, Yanting et al. "Enhanced peroxymonosulfate (PMS) activation process mediated by vanadium modified CoO catalyst for rapid degradation of organic pollutants: Insights into the role of V" . | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 12 . 2 (2024) . |
APA | Jiang, Yanting , Weng, Xin , Hu, Yihui , Lv, Yuancai , Yu, Zhendong , Liu, Yifan et al. Enhanced peroxymonosulfate (PMS) activation process mediated by vanadium modified CoO catalyst for rapid degradation of organic pollutants: Insights into the role of V . | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING , 2024 , 12 (2) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Membrane separation strategies offer promising platform for the emulsion separation. However, the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges. In this study, we report a CFM@UiO-66-NH2 membrane with high separation flux, efficiency and stability, through utilizing a robust anti-abrasion collagen fiber membrane (CFM) as the multifunctional support and UiO-66-NH2 by an in-situ growth as the separation layer. The high mechanical strength of the CFM compensated for the weakness of the separation layer, while the charge-breaking effect of UiO-66-NH2, along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers, contributed to the potential for efficient separation. Additionally, the CFM@UiO-66-NH2 membrane exhibited superhydrophilic properties, making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants. The membrane demonstrated remarkable separation efficiencies of up to 99.960% and a separation flux of 370.05 L center dot m-2 center dot h-1. Moreover, it exhibits stability, durability, and abrasion resistance, maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance. After six cycles of reuse, it achieved a separation flux of 417.97 L center dot m-2 center dot h-1 and a separation efficiency of 99.747%. Furthermore, after undergoing 500 cycles of strong abrasion, the separation flux remained at 124.39 L center dot m-2 center dot h-1, with a separation efficiency of 99.992%. These properties make it suitable for the long-term use in harsh operating environments. We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH2 and its in-situ growth on the CFM, which forms a size-screening separation layer. Our work highlights the potential of the CFM@UiO-66NH2 membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation. (c) 2023 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
Keyword :
Collagen fibers Collagen fibers Metal -organic frameworks Metal -organic frameworks Oil -in -water emulsion separation Oil -in -water emulsion separation Size sieving Size sieving
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Ye, Xiaoxia , Huang, Rixin , Zheng, Zhihong et al. Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH2 with ultra-high efficiency and stability for oil-in-water emulsions separation [J]. | CHINESE JOURNAL OF CHEMICAL ENGINEERING , 2024 , 66 : 285-297 . |
MLA | Ye, Xiaoxia et al. "Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH2 with ultra-high efficiency and stability for oil-in-water emulsions separation" . | CHINESE JOURNAL OF CHEMICAL ENGINEERING 66 (2024) : 285-297 . |
APA | Ye, Xiaoxia , Huang, Rixin , Zheng, Zhihong , Liu, Juan , Chen, Jie , Lv, Yuancai . Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH2 with ultra-high efficiency and stability for oil-in-water emulsions separation . | CHINESE JOURNAL OF CHEMICAL ENGINEERING , 2024 , 66 , 285-297 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |