• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:翁祖铨

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 7 >
ROS-Responsive Cationic Polymers with Intrinsic Anti-Inflammatory Activity for Intracellular Protein Delivery SCIE
期刊论文 | 2025 , 26 (4) , 2268-2281 | BIOMACROMOLECULES
Abstract&Keyword Cite

Abstract :

The intracellular delivery of protein drugs via nanocarriers offers significant potential for expanding their therapeutic applications. However, the unintended activation of innate immune responses and inflammation triggered by the carriers presents a major challenge, often compromising therapeutic efficacy. Here, we present oligoethylenimine-thioketal (OEI-TK), a reactive oxygen species-responsive cationic polymer with intrinsic anti-inflammatory properties, to overcome this challenge. OEI-TK self-assembles electrostatically with bovine serum albumin (BSA) to form stable nanoparticles (OTB NPs) with excellent encapsulation efficiency. In vitro studies confirmed that OTB NPs retained OEI-TK's antioxidant and anti-inflammatory properties, enhanced biocompatibility, and efficiently delivered BSA into cells. Furthermore, OEI-TK facilitated the intracellular delivery of beta-galactosidase while preserving its enzymatic activity, demonstrating its potential for functional protein transport. These findings highlight OEI-TK as a promising platform with dual benefits of inflammation modulation and intracellular protein delivery, holding potential for the synergistic treatment of inflammation-related diseases.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Yongming , Ming, Yangcan , Yu, Zhichao et al. ROS-Responsive Cationic Polymers with Intrinsic Anti-Inflammatory Activity for Intracellular Protein Delivery [J]. | BIOMACROMOLECULES , 2025 , 26 (4) : 2268-2281 .
MLA Wang, Yongming et al. "ROS-Responsive Cationic Polymers with Intrinsic Anti-Inflammatory Activity for Intracellular Protein Delivery" . | BIOMACROMOLECULES 26 . 4 (2025) : 2268-2281 .
APA Wang, Yongming , Ming, Yangcan , Yu, Zhichao , Xu, Zhenjin , Zou, Minglang , Chen, Cuiping et al. ROS-Responsive Cationic Polymers with Intrinsic Anti-Inflammatory Activity for Intracellular Protein Delivery . | BIOMACROMOLECULES , 2025 , 26 (4) , 2268-2281 .
Export to NoteExpress RIS BibTex

Version :

Dual-signal point-of-care testing method for T-2 toxin utilizing target-responsive DNA hydrogel and starch iodide paper SCIE
期刊论文 | 2025 , 210 | MICROCHEMICAL JOURNAL
Abstract&Keyword Cite

Abstract :

The persistence of T-2 toxin in food and feed matrices renders it a pervasive contaminant, impacting both human and animal health. Traditional detection methods suffer from cumbersome instrumentation and intricate procedures, rendering on-site detection of T-2 toxin unfeasible. Therefore, we have constructed a real-time detection method for T-2 toxin detection by employing a target-responsive DNA hydrogel in conjunction with potassium iodide starch test paper. This method integrates both colorimetric and distance-based signal outputs, offering a streamlined and effective approach for the on-site detection of T-2 toxin. The specific binding of the target to the aptamer in the DNA hydrogel results in the collapse of the hydrogels structure, which changes the viscosity of the system and released horseradish peroxidase in the hydrogel wrapped, and then produces blue-purple marks of different lengths on the starch iodide papers to achieve the specific detection of T-2 toxin. Under optimized conditions, the assay exhibits a detection range spanning from 10 ng/mL to 10 mg/mL for the toxin, with a detection limit of 12.83 ng/mL. The proposed method has been successfully applied for the detection of real corn samples with satisfied result. Such colorimetric-distance dual signal detection method offers notable advantages, including straightforward operation, clear signal interpretation, and practical utility. Its implementation enables rapid, on-the-spot detection of T-2 toxin, particularly beneficial in resource-limited regions and less developed countries.

Keyword :

Point-of-care testing Point-of-care testing Starch iodide paper Starch iodide paper T-2 toxin T-2 toxin Target-responsive DNA hydrogel Target-responsive DNA hydrogel

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Deng, Ye , Lin, Jiarong , Wang, Jingxuan et al. Dual-signal point-of-care testing method for T-2 toxin utilizing target-responsive DNA hydrogel and starch iodide paper [J]. | MICROCHEMICAL JOURNAL , 2025 , 210 .
MLA Deng, Ye et al. "Dual-signal point-of-care testing method for T-2 toxin utilizing target-responsive DNA hydrogel and starch iodide paper" . | MICROCHEMICAL JOURNAL 210 (2025) .
APA Deng, Ye , Lin, Jiarong , Wang, Jingxuan , Lin, Yue , Luo, Fang , Weng, Zuquan et al. Dual-signal point-of-care testing method for T-2 toxin utilizing target-responsive DNA hydrogel and starch iodide paper . | MICROCHEMICAL JOURNAL , 2025 , 210 .
Export to NoteExpress RIS BibTex

Version :

Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing SCIE
期刊论文 | 2025 , 14 (9) | ADVANCED HEALTHCARE MATERIALS
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

Multifunctional hydrogels hold significant promise for promoting the healing of infected wounds but often fall short in inhibiting antibiotic-resistant pathogens, and their clinical translation is limited by complex preparation processes and high costs. In this study, a multifunctional hydrogel is developed by combining metal-phenolic networks (MPNs) formed by tannic acid (TA) and gallium ions (Ga3+) with chitosan (CS) through a simple one-step method. The resulting CS-TA-Ga3+ (CTG) hydrogel is cost-effective and exhibits desirable properties, including injectability, self-healing, pH responsiveness, hemostasis, antioxidant, anti-inflammatory, and antibacterial activities. Importantly, the CTG hydrogels are effective against antibiotic-resistant pathogens due to the unique antibacterial mechanism of Ga3+. In vivo studies demonstrate that the CTG hydrogel promotes follicle formation and collagen deposition, accelerating the healing of infected wounds by inhibiting blood loss, suppressing bacterial growth, and modulating the inflammatory microenvironment. These findings highlight the CTG hydrogel's potential as an advanced and translational dressing for enhancing the healing of infected wounds.

Keyword :

antibacterial antibacterial gallium ions gallium ions infected wound healing infected wound healing metal-phenolic network metal-phenolic network multifunctional hydrogel multifunctional hydrogel

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zou, Minglang , Chen, Cuiping , Wang, Mingda et al. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing [J]. | ADVANCED HEALTHCARE MATERIALS , 2025 , 14 (9) .
MLA Zou, Minglang et al. "Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing" . | ADVANCED HEALTHCARE MATERIALS 14 . 9 (2025) .
APA Zou, Minglang , Chen, Cuiping , Wang, Mingda , Lei, Chen , Wang, Yongming , Luo, Fang et al. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing . | ADVANCED HEALTHCARE MATERIALS , 2025 , 14 (9) .
Export to NoteExpress RIS BibTex

Version :

Advanced dual-signal point-of-care testing platform for sensitive T-2 toxin detection: Integrating copper-based conductive MOF with target-responsive DNA hydrogel SCIE
期刊论文 | 2025 , 438 | SENSORS AND ACTUATORS B-CHEMICAL
Abstract&Keyword Cite

Abstract :

In this study, we present the innovative design and comprehensive evaluation of a novel point-of-care testing (POCT) methodology for the rapid and accurate detection of T-2 toxin, a potent mycotoxin with significant implications for food safety and human health. The cornerstone of this approach lies in the integration of a copper-based conductive metal-organic framework (Cu3(HHTP)2) with a target-responsive DNA hydrogel system, creating a dual-signal readout mechanism that significantly enhances detection sensitivity and specificity. Specifically, the hydrogel covers the material's surface metal active sites, which become exposed upon target addition due to hydrogel collapse. The released Cu3(HHTP)2 can catalyze the oxidation of 3,3 ',5,5 '-tetrame-thylbenzidine, resulting in a colorimetric and temperature change in the solution. This dual-mode detection strategy enables both qualitative assessment through direct visual inspection of color change and quantitative analysis by monitoring the solution temperature variation post laser irradiation with a thermometer. Under the optimized conditions, the detection system demonstrates a wide range spanning from 5 to 200 ng/mL, with a detection limit of 1.67 ng/mL. This method has been successfully demonstrated through the analysis of real-world samples, yielding encouraging results that underscore its reliability and effectiveness. The proposed dual-signal approach boasts advantages such as straightforward operational procedures, unambiguous signal outputs, and robust practicality, making it an attractive option for mycotoxin detection in resource-constrained settings and developing regions.

Keyword :

Cu3(HHTP)2 Cu3(HHTP)2 Point-of-care testing Point-of-care testing T-2 toxin T-2 toxin Target-responsive DNA hydrogel Target-responsive DNA hydrogel

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Jiarong , Deng, Ye , Lin, Yue et al. Advanced dual-signal point-of-care testing platform for sensitive T-2 toxin detection: Integrating copper-based conductive MOF with target-responsive DNA hydrogel [J]. | SENSORS AND ACTUATORS B-CHEMICAL , 2025 , 438 .
MLA Lin, Jiarong et al. "Advanced dual-signal point-of-care testing platform for sensitive T-2 toxin detection: Integrating copper-based conductive MOF with target-responsive DNA hydrogel" . | SENSORS AND ACTUATORS B-CHEMICAL 438 (2025) .
APA Lin, Jiarong , Deng, Ye , Lin, Yue , Luo, Fang , Weng, Zuquan , Wang, Jian et al. Advanced dual-signal point-of-care testing platform for sensitive T-2 toxin detection: Integrating copper-based conductive MOF with target-responsive DNA hydrogel . | SENSORS AND ACTUATORS B-CHEMICAL , 2025 , 438 .
Export to NoteExpress RIS BibTex

Version :

Microbe-imprinted polymers for rapid drug-resistant bacteria recognition SCIE
期刊论文 | 2025 , 512 | CHEMICAL ENGINEERING JOURNAL
Abstract&Keyword Cite

Abstract :

The rise of antibiotic-resistant bacteria poses a serious global health threat, highlighting the urgent need for novel strategies beyond conventional antibiotic therapies. This study explores the potential of microbe-imprinted polymers (MIPs) as innovative, pathogen-specific affinity agents. Utilizing microbial surface-initiated polymerization, MIPs are in-situ synthesized on the surface of target microbes, creating flexible heteropolymers that precisely replicate microbial surface structures. This method exhibits high affinity (KD = 2.7x108 CFU/mL for E. coli) and selectivity at the strain level. MIPs offer significant advantages over traditional antibodies, including greater stability, cost-effectiveness, and a broader spectrum of binding capabilities, making them effective for identifying and targeting various microbial strains, including unidentified or drug-resistant variants. Moreover, their favorable biocompatibility and functional resilience in diverse environments position MIPs as promising candidates for rapid pathogen detection and therapeutic applications. This research paves the way for advanced biomimetic materials in microbe-specific diagnostics and combating infections, addressing the critical need for effective tools in antibiotic resistance surveillance.

Keyword :

Affinity Affinity Antibiotic resistance Antibiotic resistance Antibody mimics Antibody mimics Microbe-imprinted polymers Microbe-imprinted polymers Microbial recognition Microbial recognition

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wu, Yuanzi , Zhou, Kaiqiang , Li, Wenhui et al. Microbe-imprinted polymers for rapid drug-resistant bacteria recognition [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 .
MLA Wu, Yuanzi et al. "Microbe-imprinted polymers for rapid drug-resistant bacteria recognition" . | CHEMICAL ENGINEERING JOURNAL 512 (2025) .
APA Wu, Yuanzi , Zhou, Kaiqiang , Li, Wenhui , Huan, Min , Yu, Zhichao , Yan, Fen et al. Microbe-imprinted polymers for rapid drug-resistant bacteria recognition . | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 .
Export to NoteExpress RIS BibTex

Version :

Injectable Hydrogels with Integrated Ph Probes and Ultrasound-Responsive Microcapsules as Smart Wound Dressings for Visual Monitoring and On-Demand Treatment of Chronic Wounds SCIE
期刊论文 | 2024 , 13 (9) | ADVANCED HEALTHCARE MATERIALS
WoS CC Cited Count: 5
Abstract&Keyword Cite

Abstract :

Hydrogel dressings capable of infection monitoring and precise treatment administration show promise for advanced wound care. Existing methods involve embedd ingorganic dyes or flexible electronics into preformed hydrogels, which raise safety issues and adaptability challenges. In this study, an injectable hydrogel based smart wound dressing is developed by integrating food-derived anthocyanidin as a visual pH probe for infection monitoring and poly(L-lactic acid) microcapsules as ultrasound-responsive delivery systems for antibiotics into a poly(ethylene glycol) hydrogel. This straightforwardly prepared hydrogel dressing maintains its favorable properties for wound repair, including porous morphology and excellent biocompatibility. In vitro experiments demonstrated that the hydrogel enabled visual assessment of pH within the range of 5 similar to 9.Meanwhile, the release of antibiotics could be triggered and controlled by ultrasound. In vivo evaluations using infected wounds and diabetic wounds revealed that the wound dressing effectively detected wound infection by monitoring pH levels and achieved antibacterial effects through ultrasound-triggered drug release. This led to significantly enhanced wound healing, as validated by histological analysis and the measurement of inflammatory cytokine levels. This injectable hydrogel-based smart wound dressing holds great potential for use in clinical settings to inform timely and precise clinical intervention and in community to improve wound care management. The study presents an injectable hydrogel dressing with flexibility to fit irregularly shaped wounds and excellent biocompatibility for visual monitoring of infection and on-demand treatment. It utilizes food-derived anthocyanidin as a pH probe and poly(L-lactic acid) microcapsules for ultrasound-responsive drug delivery. In diabetic wounds, the dressing detects infections through pH monitoring and enhances healing via ultrasound-triggered drug release.image

Keyword :

chronic wounds chronic wounds hydrogels hydrogels on-demand treatment on-demand treatment pH detection pH detection ultrasound responsive ultrasound responsive wound monitoring wound monitoring

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Huang, Da , Du, Jiahao , Luo, Fang et al. Injectable Hydrogels with Integrated Ph Probes and Ultrasound-Responsive Microcapsules as Smart Wound Dressings for Visual Monitoring and On-Demand Treatment of Chronic Wounds [J]. | ADVANCED HEALTHCARE MATERIALS , 2024 , 13 (9) .
MLA Huang, Da et al. "Injectable Hydrogels with Integrated Ph Probes and Ultrasound-Responsive Microcapsules as Smart Wound Dressings for Visual Monitoring and On-Demand Treatment of Chronic Wounds" . | ADVANCED HEALTHCARE MATERIALS 13 . 9 (2024) .
APA Huang, Da , Du, Jiahao , Luo, Fang , He, Gang , Zou, Minglang , Wang, Yongming et al. Injectable Hydrogels with Integrated Ph Probes and Ultrasound-Responsive Microcapsules as Smart Wound Dressings for Visual Monitoring and On-Demand Treatment of Chronic Wounds . | ADVANCED HEALTHCARE MATERIALS , 2024 , 13 (9) .
Export to NoteExpress RIS BibTex

Version :

Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning SCIE
期刊论文 | 2024 , 14 (1) | SCIENTIFIC REPORTS
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

The increasing prevalence of antibiotic resistance in Cutibacterium acnes (C. acnes) requires the search for alternative therapeutic strategies. Antimicrobial peptides (AMPs) offer a promising avenue for the development of new treatments targeting C. acnes. In this study, to design peptides with the specific inhibitory activity against C. acnes, we employed a deep learning pipeline with generators and classifiers, using transfer learning and pretrained protein embeddings, trained on publicly available data. To enhance the training data specific to C. acnes inhibition, we constructed a phylogenetic tree. A panel of 42 novel generated linear peptides was then synthesized and experimentally evaluated for their antimicrobial selectivity and activity. Five of them demonstrated their high potency and selectivity against C. acnes with MIC of 2-4 mu g/mL. Our findings highlight the potential of these designed peptides as promising candidates for anti-acne therapeutics and demonstrate the power of computational approaches for the rational design of targeted antimicrobial peptides.

Keyword :

Antimicrobial peptides Antimicrobial peptides Cutibacterium acnes Cutibacterium acnes Deep learning Deep learning Pretrained protein language embedding Pretrained protein language embedding Transfer learning Transfer learning

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Dong, Qichang , Wang, Shaohua , Miao, Ying et al. Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning [J]. | SCIENTIFIC REPORTS , 2024 , 14 (1) .
MLA Dong, Qichang et al. "Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning" . | SCIENTIFIC REPORTS 14 . 1 (2024) .
APA Dong, Qichang , Wang, Shaohua , Miao, Ying , Luo, Heng , Weng, Zuquan , Yu, Lun . Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning . | SCIENTIFIC REPORTS , 2024 , 14 (1) .
Export to NoteExpress RIS BibTex

Version :

Ultra-sensitive immobilization-free homogeneous electrochemiluminescence biosensor for thrombin detection via electrostatic interaction and Exo I-powered signal amplification SCIE
期刊论文 | 2024 , 207 | MICROCHEMICAL JOURNAL
Abstract&Keyword Cite

Abstract :

Herein, we present the development of an ultra-sensitive immobilization-free homogeneous electrochemiluminescence (ECL) biosensor, leveraging the electrostatic repulsion between a negatively charged indium tin oxide (ITO) electrode and DNA and exonuclease I (Exo I)-powered signal amplification, to achieve highly efficient detection of thrombin. Specifically, the aptamer and the complementary DNA engage in the formation of a double-stranded DNA (dsDNA) complex. This negatively charged dsDNA structure subsequently associates with a positively charged ECL indicator, namely ruthenium phenanthroline (Ru(phen)32+), resulting in the generation of the dsDNA-Ru(phen)32+ ECL probe. The negatively charged dsDNA-Ru(phen)32+ experiences electrostatic repulsion from the negatively charged ITO electrode, resulting in a low ECL signal. Nonetheless, upon the addition of thrombin, the aptamer preferentially binds to thrombin, triggering the releases of the embedded Ru (phen)32+ facilitated by Exo I and hence resulting in a robust and enhanced ECL signal. The amplified ECL signal is linearly correlated with the logarithm of thrombin concentration within a detection range spanning from 10 fmol/mL to 50 pmol/mL, with a remarkable detection limit of 3.21 fmol/mL. This strategy eliminates the need for cumbersome labeling steps, avoids the electrode modification process, overcoming the low immobilization efficiency of aptamers and poor signal transduction of indicators labeled at the end of DNA.

Keyword :

Biomarker Biomarker Electrochemiluminescence biosensors Electrochemiluminescence biosensors Electrostatic force Electrostatic force exonuclease I exonuclease I Thrombin Thrombin

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zheng, Zhenjie , Lin, Jiarong , Zhang, Junyi et al. Ultra-sensitive immobilization-free homogeneous electrochemiluminescence biosensor for thrombin detection via electrostatic interaction and Exo I-powered signal amplification [J]. | MICROCHEMICAL JOURNAL , 2024 , 207 .
MLA Zheng, Zhenjie et al. "Ultra-sensitive immobilization-free homogeneous electrochemiluminescence biosensor for thrombin detection via electrostatic interaction and Exo I-powered signal amplification" . | MICROCHEMICAL JOURNAL 207 (2024) .
APA Zheng, Zhenjie , Lin, Jiarong , Zhang, Junyi , Luo, Fang , Weng, Zuquan , Wang, Jian et al. Ultra-sensitive immobilization-free homogeneous electrochemiluminescence biosensor for thrombin detection via electrostatic interaction and Exo I-powered signal amplification . | MICROCHEMICAL JOURNAL , 2024 , 207 .
Export to NoteExpress RIS BibTex

Version :

Photoelectrochemical Sensor for H2S Based on a Lead-Free Perovskite/Metal-Organic Framework Composite SCIE
期刊论文 | 2024 , 96 (10) , 4290-4298 | ANALYTICAL CHEMISTRY
WoS CC Cited Count: 3
Abstract&Keyword Cite

Abstract :

Halide perovskites have emerged as a highly promising class of photoelectric materials. However, the application of lead-based perovskites has been hindered by their toxicity and relatively weak stability. In this work, a composite material comprising a lead-free perovskite cesium copper iodide (CsCu2I3) nanocrystal and a metal-organic framework (MOF-801) has been synthesized through an in situ growth approach. The resulting composite material, denoted as CsCu2I3/MOF-801, demonstrates outstanding stability and exceptional optoelectronic characteristics. MOF-801 may serve a dual role by acting as a protective barrier between CsCu2I3 nanocrystals and the external environment, as well as promoting the efficient transfer of photogenerated charge carriers, thereby mitigating their recombination. Consequently, CsCu2I3/MOF-801 demonstrates its utility by providing both stability and a notably high initial photocurrent. Leveraging the inherent reactivity between H2S and the composite material, which results in the formation of Cu2S and structural alteration, an exceptionally sensitive photoelectrochemical sensor for H2S detection has been designed. This sensor exhibits a linear detection range spanning from 0.005 to 100 mu M with a remarkable detection limit of 1.67 nM, rendering it highly suitable for precise quantification of H2S in rat brains. This eco-friendly sensor significantly broadens the application horizon of perovskite materials and lays a robust foundation for their future commercialization.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Mao, Mengfan , Zu, Yexin , Zhang, Yating et al. Photoelectrochemical Sensor for H2S Based on a Lead-Free Perovskite/Metal-Organic Framework Composite [J]. | ANALYTICAL CHEMISTRY , 2024 , 96 (10) : 4290-4298 .
MLA Mao, Mengfan et al. "Photoelectrochemical Sensor for H2S Based on a Lead-Free Perovskite/Metal-Organic Framework Composite" . | ANALYTICAL CHEMISTRY 96 . 10 (2024) : 4290-4298 .
APA Mao, Mengfan , Zu, Yexin , Zhang, Yating , Qiu, Yongzhen , Lin, Yue , Luo, Fang et al. Photoelectrochemical Sensor for H2S Based on a Lead-Free Perovskite/Metal-Organic Framework Composite . | ANALYTICAL CHEMISTRY , 2024 , 96 (10) , 4290-4298 .
Export to NoteExpress RIS BibTex

Version :

Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota SCIE
期刊论文 | 2024 , 266 | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Abstract&Keyword Cite

Abstract :

Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HCMSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the antioxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by alpha-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.

Keyword :

Anti-inflammatory Anti-inflammatory Curcumin Curcumin Gut microbiota Gut microbiota Microspheres Microspheres Oral delivery Oral delivery Ulcerative colitis Ulcerative colitis

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Huang, Da , Wang, Yongming , Xu, Chenlan et al. Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota [J]. | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES , 2024 , 266 .
MLA Huang, Da et al. "Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota" . | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 266 (2024) .
APA Huang, Da , Wang, Yongming , Xu, Chenlan , Zou, Minglang , Ming, Yangcan , Luo, Fang et al. Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota . | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES , 2024 , 266 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 7 >

Export

Results:

Selected

to

Format:
Online/Total:47/10389217
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1