Query:
学者姓名:郑巧
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
Encapsulation is a critical strategy for mitigating the instability of perovskites, which remains the primary challenge for their commercialization. Traditional encapsulation adhesives, such as ethylene vinyl acetate and epoxy resin, are constrained by high-temperature processes and potential chemical reactions that can impair the efficiency of perovskite devices. The use of vacuum silicone grease, primarily composed of polydimethylsiloxane (PDMS), not only shields the perovskite devices from moisture and oxygen but also significantly enhances their power conversion efficiency from 23.91% to 25.34%. Further investigations reveal that this improvement can be attributed to the formation of coordination bonds between the oxygen atoms in PDMS and lead within the perovskite structure. This mechanism boosts efficiency and inhibits the formation of Pb0 defects, significantly contributing to efficiency loss and instability. A ten-fold increase in stability is observed at approximate to 90% humidity, underscoring its potential as a low-temperature, non-damaging, and effective encapsulation method for enhancing the stability and performance of perovskite solar cells.
Keyword :
defect suppression defect suppression encapsulation encapsulation PDMS PDMS perovskite solar cells perovskite solar cells stability stability
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wu, Jionghua , Lan, Junxing , Wang, Renjie et al. Low-Temperature Encapsulation with Silicone Grease Enhances Efficiency and Stability of Perovskite Solar Cells via Pb0 Defect Passivation [J]. | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
MLA | Wu, Jionghua et al. "Low-Temperature Encapsulation with Silicone Grease Enhances Efficiency and Stability of Perovskite Solar Cells via Pb0 Defect Passivation" . | ADVANCED FUNCTIONAL MATERIALS (2025) . |
APA | Wu, Jionghua , Lan, Junxing , Wang, Renjie , Cheng, Can , Wang, Weihuang , Deng, Hui et al. Low-Temperature Encapsulation with Silicone Grease Enhances Efficiency and Stability of Perovskite Solar Cells via Pb0 Defect Passivation . | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Zinc oxide (ZnO) is used as an electron transport layer (ETL) in inverted organic solar cells (IOSCs) owing to its excellent performance, such as good light transmission and high conductivity, while its surface defects and photocatalytic properties limit the development of IOSCs. Herein, we apply an antioxidant, syringic acid (SA), to modify the surface of ZnO film, which observably improve the efficiency and stability of IOSCs. It is found that SA can effectively passivate the surface defects of ZnO and optimize surface morphology, as well as reduce the work function (WF) of ZnO resulting in an improvement of the charge transport of IOSCs. The power conversion efficiency (PCE) of PM6:Y6-based IOSCs is increased from 16.19 % to 18.18 %, it is the highest PCE values of the single-junction IOSCs based on PM6:Y6 system as reported. Meanwhile, the photostability of the device is markedly improved due to SA could suppress the photocatalytic of ZnO under the ultraviolet aging.
Keyword :
Photostability' Inverted organic solar cells Photostability' Inverted organic solar cells Surface defects Surface defects Syringic acid Syringic acid Zinc oxide Zinc oxide
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zheng, Qiao , Guo, Zhaohuang , Zhuang, Jinyong et al. 18.18 % Efficiency of organic solar cells based on PM6:Y6 with Syringic acid modified ZnO [J]. | SURFACES AND INTERFACES , 2025 , 65 . |
MLA | Zheng, Qiao et al. "18.18 % Efficiency of organic solar cells based on PM6:Y6 with Syringic acid modified ZnO" . | SURFACES AND INTERFACES 65 (2025) . |
APA | Zheng, Qiao , Guo, Zhaohuang , Zhuang, Jinyong , Zhou, Ziqi , Wu, Jionghua , Deng, Hui et al. 18.18 % Efficiency of organic solar cells based on PM6:Y6 with Syringic acid modified ZnO . | SURFACES AND INTERFACES , 2025 , 65 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Antimony sulfide (Sb2S3) thin film have a suitable band gap (1.73 eV) and high absorption coefficient, indicating potential prospects in indoor photovoltaics. The open-circuit voltage (VOC) attenuation under indoor weak light limits the performance and application, which is affected by the heterojunction interface quality. Hence, we propose a hole transport layer free Sb2S3 indoor photovoltaic cell using Li-doped TiO2 as the electron transport layer to overcome weak-light VOC loss. The Li-doped TiO2 films prepared by spray pyrolysis LiCl additive precursor reveal higher surface potentials, enhancing electron collections. The doped interface also promoted subsequent grain growth of Sb2S3 thin film. The champion device, configured as FTO/TiO2:Li/Sb2S3/Au, achieves an efficiency of 6.12% with an optimal Li doping ratio of 8% in the TiO2 layer. The Li introduction at the junction interface suppresses the photocarrier recombinations under indoor light, thus improving device performance. The indoor power conversion efficiency of the Li-TiO2 based Sb2S3 device reaches 12.7% under the irradiation of 1000-lux LED, showing 48% improvement compared with the undoped device. The Li-doped TiO2/Sb2S3 photovoltaic device demonstrates significant advantages, particularly in cold and monochromatic light conditions, opening new prospects for indoor application.
Keyword :
conversion efficiency conversion efficiency indoor photovoltaics indoor photovoltaics Li-doped TiO2 Li-doped TiO2 Sb2S3 Sb2S3 VOC improvement VOC improvement
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wu, Kefei , Deng, Hui , Feng, Xinxin et al. Suppressing weak-light voltage attenuation in Sb2S3 indoor photovoltaics using Li-doped TiO2 layer [J]. | NANO RESEARCH , 2025 , 18 (10) . |
MLA | Wu, Kefei et al. "Suppressing weak-light voltage attenuation in Sb2S3 indoor photovoltaics using Li-doped TiO2 layer" . | NANO RESEARCH 18 . 10 (2025) . |
APA | Wu, Kefei , Deng, Hui , Feng, Xinxin , Hong, Jinwei , Wang, Guidong , Ishaq, Muhammad et al. Suppressing weak-light voltage attenuation in Sb2S3 indoor photovoltaics using Li-doped TiO2 layer . | NANO RESEARCH , 2025 , 18 (10) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
2D perovskite materials are ideal candidates for indoor photovoltaic (IPV) applications due to their tunable bandgap, high absorption coefficients, and enhanced stability. However, attaining uniform crystallization and overcoming low carrier mobility remain key challenges for 2D perovskites, limiting their overall performance. In this study, a 2D perovskite light-absorbing layer is constructed using a Dion-Jacobson (DJ)-phase EDA(FA)(4)Pb5I16 (n = 5) and introduced butylammonium iodide (BAI) for interface modification, thereby creating a novel DJ/Ruddlesden-Popper (RP) dual 2D perovskite heterostructure. By adjusting the thickness of the BAI-based perovskite layer, the relationship between interfacial defect states and carrier mobility is investigated under varying indoor light intensities. The results indicate that, by achieving a balance between interfacial defect passivation and carrier transport, the optimized 2D perovskite device reaches a power conversion efficiency (PCE) of 30.30% and an open-circuit voltage (V-OC) of 936 mV under 1000 lux (3000 K LED). 2D-DJ/RP perovskite IPV exhibits a twentyfold increase in T-90 lifetime compared to 3D perovskite devices. It is the first time to systematically study 2D perovskites in IPV applications, demonstrating that rationally designed and optimized 2D perovskites hold significant potential for fabricating high-performance indoor PSCs.
Keyword :
2D perovskite solar cells 2D perovskite solar cells carrier transport carrier transport defect passivation defect passivation dual-phase 2D perovskite heterostructures dual-phase 2D perovskite heterostructures indoor photovoltaic indoor photovoltaic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Renjie , Wu, Jionghua , Zheng, Qiao et al. Stable and Efficient Indoor Photovoltaics Through Novel Dual-Phase 2D Perovskite Heterostructures [J]. | ADVANCED MATERIALS , 2025 , 37 (18) . |
MLA | Wang, Renjie et al. "Stable and Efficient Indoor Photovoltaics Through Novel Dual-Phase 2D Perovskite Heterostructures" . | ADVANCED MATERIALS 37 . 18 (2025) . |
APA | Wang, Renjie , Wu, Jionghua , Zheng, Qiao , Deng, Hui , Wang, Weihuang , Chen, Jing et al. Stable and Efficient Indoor Photovoltaics Through Novel Dual-Phase 2D Perovskite Heterostructures . | ADVANCED MATERIALS , 2025 , 37 (18) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The high photovoltaic conversion efficiency (PCE) of ternary organic solar cells (OSCs) based on PTB7-Th, PC71BM and IEICO-4F material is obtained, the short-circuit current density (J SC), fill factor (FF), and open-circuit voltage is 25.90 mA cm-2, 73.20% and 0.71 V, respectively. PCE is as high as 13.53%. It is the highest PCE of ternary OSCs based on PTB7-Th, PC71BM and IEICO-4F materials for all we know. The narrow bandgap material of IEICO-4F is deposited on PTB7-Th:PC71BM bulk heterojunction (BHJ) by layer-by-layer process. We constructed the dual bandgap active layer both BHJ and pseudo-planar heterojunction (P-PHJ), it could be defined as ternary BHJ/P-PHJ of OSCs. This type of OSCs is not only the complementary bandgap material of the active layer, but also increasing the donor/acceptor (D/A) interface. The excitons generation and collection of the device are increased leading a higher J SC and FF. The semitransparent OSCs (ST-OSCs) is prepared by varying the thickness of Ag electrode and PCE can reach 9.70%, and the average visible light transmittance and light use efficiency of ST-OSCs are improved effectively.
Keyword :
bulk heterojunction bulk heterojunction donor/acceptor interface donor/acceptor interface dual bandgap active layer dual bandgap active layer layer-by-layer layer-by-layer pseudo-planar heterojunction pseudo-planar heterojunction ternary organic solar cells ternary organic solar cells
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zheng, Qiao , Zhou, Hui , Guo, Zhaohuang et al. Improved performance of ternary organic solar cells based on both bulk and pseudo-planar heterojunction active layer [J]. | JOURNAL OF PHYSICS D-APPLIED PHYSICS , 2024 , 57 (31) . |
MLA | Zheng, Qiao et al. "Improved performance of ternary organic solar cells based on both bulk and pseudo-planar heterojunction active layer" . | JOURNAL OF PHYSICS D-APPLIED PHYSICS 57 . 31 (2024) . |
APA | Zheng, Qiao , Zhou, Hui , Guo, Zhaohuang , Zhuang, Jinyong , Deng, Hui , Wu, Jionghua et al. Improved performance of ternary organic solar cells based on both bulk and pseudo-planar heterojunction active layer . | JOURNAL OF PHYSICS D-APPLIED PHYSICS , 2024 , 57 (31) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Efficient ternary organic solar cells were achieved by utilizing an ultra-narrow bandgap material, IEICO-4 F, mixed with the fullerene material PC71BM as the acceptor and PTB7-Th polymer as the donor. The different weights of IEICO-4 F were dropped into the active layer to adjust the ratio of acceptor and donor, optimizing the performance of the cells. The results showed the ternary organic solar cells with 10wt% IEICO-4 F could obtain a higher short-circuit current density resulting in the power conversion efficiency (PCE) up to 9.56%. MoO3/Ag/MoO3 as the transparent electrodes of the semitransparent organic solar cell (ST-OSCs) were prepared. The different thicknesses of Ag impacts on the performance of the ST-OSCs were investigated. The PCE of the ternary ST-OSCs was increased to 7.34% and the average visible light transmittance (AVT) was increased to 28.74% when Ag was 10 nm thickness. The ternary ST-OSCs presented both a good light transmittance and a high PCE. In addition, the light utilization efficiency of the ST-OSCs was increased to 2.1%, and the color reproduction index was improved too. The PCE and AVT of the ST-OSCs could improve simultaneously due to the appropriate ratio of the acceptor and donor as well as the optimized transparent electrodes.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zheng, Qiao , Zhou, Hui , Du, Shunli et al. Efficiency and average visible light transmittance improved simultaneously of the semitransparent organic solar cells [J]. | JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS , 2024 , 35 (6) . |
MLA | Zheng, Qiao et al. "Efficiency and average visible light transmittance improved simultaneously of the semitransparent organic solar cells" . | JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS 35 . 6 (2024) . |
APA | Zheng, Qiao , Zhou, Hui , Du, Shunli , Chen, Pengsen , Huang, Jingang , Deng, Hui et al. Efficiency and average visible light transmittance improved simultaneously of the semitransparent organic solar cells . | JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS , 2024 , 35 (6) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Antimony sulfide (Sb2S3) solar cells fabricated via hydrothermal deposition have attracted widespread attention. The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb2S3 thin films. Nevertheless, incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination, constraining device performance. Herein, a two-step rapid thermal processing (RTP) annealing strategy is proposed to improve the crystal quality and efficiency of Sb2S3 solar cells. The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure. The two-step RTP annealing with the 330 degrees C low-temperature and 370 degrees C high-temperature process ensures high crystallinity and vertical orientations of Sb2S3 thin films, accompanied by a reduction in defect concentration from 1.01 x 10(12) to 5.97 x 10(11) cm(-3). The Sb2S3 solar cell achieves an efficiency of 8.20% with an enhanced open circuit voltage (V-OC) of 784 mV. The build-in voltage (V-bi) of 1.17 V and irradiation-dependent ideal factor (n) of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices. The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb2S3 solar cells.
Keyword :
defect passivation defect passivation hydrothermal hydrothermal Sb2S3 solar cells Sb2S3 solar cells two-step annealing two-step annealing
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Deng, Hui , Feng, Xinxin , Zhu, Qiqiang et al. 8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy [J]. | SCIENCE CHINA-MATERIALS , 2024 , 67 (11) : 3666-3674 . |
MLA | Deng, Hui et al. "8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy" . | SCIENCE CHINA-MATERIALS 67 . 11 (2024) : 3666-3674 . |
APA | Deng, Hui , Feng, Xinxin , Zhu, Qiqiang , Liu, Yonghao , Wang, Guidong , Zhang, Caixia et al. 8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy . | SCIENCE CHINA-MATERIALS , 2024 , 67 (11) , 3666-3674 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Perovskite solar cells have gradually become the most attractive alternative for next-generation photovoltaic devices due to their excellent photovoltaic conversion efficiencies and low manufacturing costs. Defect engineering is an essential topic for improving the performance of perovskite devices. In this study, we utilize a bifunctional alkylamine sulfonate to modify the perovskite interfaces. The TsO- of sulfonates coordinates with Pb2+, while -NH2 of alkylamine forms hydrogen bonds with iodine, which reduces charge recombination and improves energy level arrangement. The molecular size and the alkylamine's dielectric constant significantly influence the interface modification performance. For the champion device with BATsO treatment, there is an enhancement in both the fill factor and the open-circuit voltage, resulting in a power conversion efficiency (PCE) of 23.53%. After 400 h of working condition, the device maintains roughly 90.40% of its initial efficiency. Therefore, this study postulates that modifying bifunctional alkylamine sulfonates could effectively enhance the PSC's performance.
Keyword :
Double -functional additive Double -functional additive Passivation defects Passivation defects Perovskite solar cells Perovskite solar cells
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Huang, Shaobiao , Wang, Renjie , Zheng, Qiao et al. Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells [J]. | SOLAR ENERGY MATERIALS AND SOLAR CELLS , 2024 , 270 . |
MLA | Huang, Shaobiao et al. "Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells" . | SOLAR ENERGY MATERIALS AND SOLAR CELLS 270 (2024) . |
APA | Huang, Shaobiao , Wang, Renjie , Zheng, Qiao , Deng, Hui , Zhang, Caixia , Wang, Weihuang et al. Optimal interfacial engineering with different bifunctional alkylamine sulfonates for efficient perovskite solar cells . | SOLAR ENERGY MATERIALS AND SOLAR CELLS , 2024 , 270 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Perovskite solar cells (PSCs) efficiency has recently achieved significant advancements, surpassing the 26% threshold. Excessive PbI2, often used in high-efficiency PSCs, will also cause stability or defect problems. To address these challenges, we introduce anionic and cationic bifunctional additives to passivate PSCs synergistically. Phenylethylamine trifluoroacetate (PEATFA) is utilized as an additive to passivate the perovskite film. The PEA(+) cation facilitates the formation of two-dimensional perovskite while TFA(-) anion passivate the uncoordinated Pb2+ ions and iodine vacancies, enhancing perovskite crystal quality without excess PbI2. Furthermore, PEATFA modification optimizes the energy level matching between the perovskite and charge transfer layers, thereby enhancing charge transfer and extraction capabilities. Finally, the device achieves an impressive power conversion efficiency of 24.05% while exhibiting minimal hysteresis and good stability.
Keyword :
double-functional additive double-functional additive passivation defects passivation defects perovskite solar cells perovskite solar cells phenethylamine trifluoroacetate phenethylamine trifluoroacetate
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wu, Jionghua , Hang, Chenwang , Wang, Renjie et al. Double-functional additive strategy for efficient perovskite solar cells [J]. | SCIENCE CHINA-MATERIALS , 2024 , 67 (8) : 2628-2636 . |
MLA | Wu, Jionghua et al. "Double-functional additive strategy for efficient perovskite solar cells" . | SCIENCE CHINA-MATERIALS 67 . 8 (2024) : 2628-2636 . |
APA | Wu, Jionghua , Hang, Chenwang , Wang, Renjie , Zheng, Qiao , Deng, Hui , Zhang, Caixia et al. Double-functional additive strategy for efficient perovskite solar cells . | SCIENCE CHINA-MATERIALS , 2024 , 67 (8) , 2628-2636 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Constructing 2D/3D perovskite heterostructures with organic molecules is key to improving the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). However, a comprehensive understanding of the inhibitory relationship between the 2D perovskite layer and ion migration at the interface is still lacking. In this study, we use different alkyl ammonium iodides to build 2D/3D perovskite heterostructures. The research results show that both the chain length of alkyl and amino group count in alkyl ammonium iodide can significantly affect the crystal structure orientation of the 2D perovskite layer. A Dion-Jacobson (DJ) 2D/3D structure treated with ODADI shows superior defect passivation and carrier extraction, leading to PSCs with a 24.51 % PCE. Furthermore, the perovskite based on ODA cations eliminates the influence of Van der Waals interaction in perovskite based on BA or OA cations, which improves the stability of the lattice structure, and significantly inhibits ion migration. Therefore, after a maximum power point stability test of 1500 h, devices retain approximately 88 % of their initial PCE. This work offers fresh insights into optimizing interfaces in 2D/3D PSCs by selecting suitable organic molecules.
Keyword :
2D/3d perovskite heterostructure 2D/3d perovskite heterostructure Defect passivation Defect passivation Ion migration Ion migration Perovskite solar cells Perovskite solar cells Stability Stability
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Renjie , Li, Yiming , Zhu, Jingwei et al. A comparative study of alkylammonium halide interface modification for high efficiency and ion migration stability perovskite solar cells [J]. | MATERIALS TODAY PHYSICS , 2024 , 45 . |
MLA | Wang, Renjie et al. "A comparative study of alkylammonium halide interface modification for high efficiency and ion migration stability perovskite solar cells" . | MATERIALS TODAY PHYSICS 45 (2024) . |
APA | Wang, Renjie , Li, Yiming , Zhu, Jingwei , Zheng, Qiao , Deng, Hui , Zhang, Caixia et al. A comparative study of alkylammonium halide interface modification for high efficiency and ion migration stability perovskite solar cells . | MATERIALS TODAY PHYSICS , 2024 , 45 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |