Query:
学者姓名:周桂炫
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
Chemotherapy-induced hair loss (alopecia) (CIA) remains a major unsolved problem in clinical oncology. CIA is often considered to be a consequence of the antimitotic and apoptosis-promoting properties of chemotherapy drugs acting on rapidly proliferating hair matrix keratinocytes. Here, we show that in a mouse model of CIA, the downregulation of Shh signaling in the hair matrix is a critical early event. Inhibition of Shh signaling recapitulated key morphological and functional features of CIA, whereas recombinant Shh protein partially rescued hair loss. Phosphoproteomics analysis revealed that activation of the MAPK pathway is a key upstream event, which can be further manipulated to rescue CIA. Finally, in organ-cultured human scalp hair follicles as well as in patients undergoing chemotherapy, reduced expression of SHH gene correlates with chemotherapy-induced hair follicle damage or the degree of CIA, respectively. Our work revealed that Shh signaling is an evolutionarily conserved key target in CIA pathobiology. Specifically targeting the intrafollicular MAPK-Shh axis may provide a promising strategy to manage CIA.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Haslam, Iain S. , Zhou, GuiXuan , Xie, GuoJiang et al. Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia [J]. | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2021 , 141 (2) : 334-344 . |
MLA | Haslam, Iain S. et al. "Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia" . | JOURNAL OF INVESTIGATIVE DERMATOLOGY 141 . 2 (2021) : 334-344 . |
APA | Haslam, Iain S. , Zhou, GuiXuan , Xie, GuoJiang , Teng, Xu , Ao, XiuLan , Yan, ZhiPeng et al. Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia . | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2021 , 141 (2) , 334-344 . |
Export to | NoteExpress RIS BibTex |
Version :
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Haslam, I. S. , Zhou, G. , Xie, G. et al. Inhibition of sonic hedgehog signalling via MAPK activation controls chemotherapy-induced alopecia [J]. | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2020 , 140 (7) : B16-B16 . |
MLA | Haslam, I. S. et al. "Inhibition of sonic hedgehog signalling via MAPK activation controls chemotherapy-induced alopecia" . | JOURNAL OF INVESTIGATIVE DERMATOLOGY 140 . 7 (2020) : B16-B16 . |
APA | Haslam, I. S. , Zhou, G. , Xie, G. , Teng, X. , Ao, X. , Yan, Z. et al. Inhibition of sonic hedgehog signalling via MAPK activation controls chemotherapy-induced alopecia . | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2020 , 140 (7) , B16-B16 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Chemotherapy and radiotherapy are common modalities for cancer treatment. While targeting rapidly growing cancer cells, they also damage normal tissues and cause adverse effects. From the initial insult such as DNA double-strand break, production of reactive oxygen species (ROS) and a general stress response, there are complex regulatory mechanisms that control the actual tissue damage process. Besides apoptosis, a range of outcomes for the damaged cells are possible including cell cycle arrest, senescence, mitotic catastrophe, and inflammatory responses and fibrosis at the tissue level. Feather and hair are among the most actively proliferating (mini-) organs and are highly susceptible to both chemotherapy and radiotherapy damage, thus provide excellent, experimentally tractable model systems for dissecting how normal tissues respond to such injuries. Taking a comparative biology approach to investigate this has turned out to be particularly productive. Started in chicken feather and then extended to murine hair follicles, it was revealed that in addition to p53-mediated apoptosis, several other previously overlooked mechanisms are involved. Specifically, Shh, Wnt, mTOR, cytokine signalling and ROS-mediated degradation of adherens junctions have been implicated in the damage and/or reparative regeneration process. Moreover, we show here that inflammatory responses, which can be prominent upon histological examination of chemo-or radiotherapy-damaged hair follicle, may not be essential for the hair loss phenotype. These studies point to fundamental, evolutionarily conserved mechanisms in controlling tissue responses in vivo, and suggest novel strategies for the prevention and management of adverse effects that arise from chemo-or radiotherapy.
Keyword :
adverse effect adverse effect chemotherapy chemotherapy feather feather hair hair radiotherapy radiotherapy
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Gao, QingXiang , Zhou, GuiXuan , Lin, Sung-Jan et al. How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models [J]. | EXPERIMENTAL DERMATOLOGY , 2019 , 28 (4) : 413-418 . |
MLA | Gao, QingXiang et al. "How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models" . | EXPERIMENTAL DERMATOLOGY 28 . 4 (2019) : 413-418 . |
APA | Gao, QingXiang , Zhou, GuiXuan , Lin, Sung-Jan , Paus, Ralf , Yue, ZhiCao . How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models . | EXPERIMENTAL DERMATOLOGY , 2019 , 28 (4) , 413-418 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Ultraviolet radiation (UVR) and ionizing radiation (IR) are common genotoxic stresses that damage human skin, although the specific damages to the genomic DNA are different. Here, we show that in the mouse glabrous skin, both UVR and IR induce DNA damage, cell cycle arrest, and condensed cell nuclei. However, only IR induces mitotic catastrophe (MC) in the epidermis. This is because UVR induces a complete blockage of pRB phosphorylation and cell cycle arrest in the G1 phase, whereas pRB phosphorylation remains positive in a significant portion of the epidermal keratinocytes following IR exposure. Furthermore, Cyclin B1 expression is significantly downregulated only by IR but not UVR. Finally, there are more MC cells in the epidermis of p53-/- mice after IR exposure as compared to wild-type mice. Our results suggest that although both IR and UVR are genotoxic, they show distinct impacts on the cell cycle machinery and thus damage the epidermal keratinocytes via different mechanisms.
Keyword :
cell cycle cell cycle cyclin B1 cyclin B1 ionizing radiation ionizing radiation mitotic catastrophe mitotic catastrophe p53 p53 pRB pRB skin skin ultraviolet radiation ultraviolet radiation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Ming , Gao, QingXiang , Teng, Xu et al. Ionizing radiation, but not ultraviolet radiation, induces mitotic catastrophe in mouse epidermal keratinocytes with aberrant cell cycle checkpoints [J]. | EXPERIMENTAL DERMATOLOGY , 2018 , 27 (7) : 791-794 . |
MLA | Wang, Ming et al. "Ionizing radiation, but not ultraviolet radiation, induces mitotic catastrophe in mouse epidermal keratinocytes with aberrant cell cycle checkpoints" . | EXPERIMENTAL DERMATOLOGY 27 . 7 (2018) : 791-794 . |
APA | Wang, Ming , Gao, QingXiang , Teng, Xu , Pan, MeiPing , Lin, TianMiao , Zhou, GuiXuan et al. Ionizing radiation, but not ultraviolet radiation, induces mitotic catastrophe in mouse epidermal keratinocytes with aberrant cell cycle checkpoints . | EXPERIMENTAL DERMATOLOGY , 2018 , 27 (7) , 791-794 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Long non-coding RNAs (lncRNAs) are non-protein coding transcripts that are involved in a broad range of biological processes. Here, we examine the functional role of lncRNAs in feather regeneration. RNA-seq profiling of the regenerating feather blastema revealed that Wnt signaling is among the most active pathways during feather regeneration, with Wnt ligands and their inhibitors showing distinct expression patterns. Co-expression analysis identified hundreds of lncRNAs with similar expression patterns to either the Wnt ligands (the Lwnt group) or their downstream target genes (the Twnt group). Among these, we randomly picked two lncRNAs in the Lwnt group and three lncRNAs in the Twnt group to validate their expression and function. Members in the Twnt group regulated feather regeneration and axis formation, whereas members in the Lwnt group showed no obvious phenotype. Further analysis confirmed that the three Twnt group members inhibit Wnt signal transduction and, at the same time, are downstream target genes of this pathway. Our results suggest that the feather regeneration model can be utilized to systematically annotate the functions of lncRNAs in the chicken genome.
Keyword :
Chicken Chicken Feather follicle Feather follicle LncRNA LncRNA Regeneration Regeneration Wnt signaling Wnt signaling
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Xiang , Gao, QingXiang , Zhu, LiYan et al. Long non-coding RNAs regulate Wnt signaling during feather regeneration [J]. | DEVELOPMENT , 2018 , 145 (21) . |
MLA | Lin, Xiang et al. "Long non-coding RNAs regulate Wnt signaling during feather regeneration" . | DEVELOPMENT 145 . 21 (2018) . |
APA | Lin, Xiang , Gao, QingXiang , Zhu, LiYan , Zhou, GuiXuan , Ni, ShiWei , Han, Hao et al. Long non-coding RNAs regulate Wnt signaling during feather regeneration . | DEVELOPMENT , 2018 , 145 (21) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Radiotherapy is a primary oncological treatment modality that also damages normal tissue, including the skin, and causes radiation dermatitis (RD). Here, we explore the mechanism of acute epidermal damage in radiation dermatitis. Two distinctive phases in the damage response were identified: an early destructive phase, where a burst of reactive oxygen species induces loss of E-cadherin-mediated cell contact, followed by a regenerative phase, during which Wnt and Hippo signaling are activated. A blocking peptide, as well as a neutralizing antibody to E-cadherin, works synergistically with ionizing radiation to promote the epidermal damage. In addition, ROS disassembles adherens junctions in epithelial cells via posttranslational mechanisms, that is, activation of Src/Abl kinases and degradation of beta-catenin/E-cadherin. The key role of tyrosine kinases in this process is further substantiated by the rescue effect of the tyrosine kinase inhibitor genistein, and the more specific Src/Abl kinase inhibitor dasatinib: both reduced ROS-induced degradation of beta-catenin/E-cadherin in vitro and ameliorated skin damage in rodent models. Finally, we confirm that the same key molecular events are also seen in human radiation dermatitis. Therefore, we propose that loss of cell contact in epidermal keratinocytes through reactive oxygen species-mediated disassembly of adherens junctions is pivotal for the acute epidermal damage in radiation dermatitis.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xie, Guojiang , Ao, Xiulan , Lin, Tianmiao et al. E-Cadherin-Mediated Cell Contact Controls the Epidermal Damage Response in Radiation Dermatitis [J]. | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2017 , 137 (8) : 1731-1739 . |
MLA | Xie, Guojiang et al. "E-Cadherin-Mediated Cell Contact Controls the Epidermal Damage Response in Radiation Dermatitis" . | JOURNAL OF INVESTIGATIVE DERMATOLOGY 137 . 8 (2017) : 1731-1739 . |
APA | Xie, Guojiang , Ao, Xiulan , Lin, Tianmiao , Zhou, Guixuan , Wang, Ming , Wang, Hanwei et al. E-Cadherin-Mediated Cell Contact Controls the Epidermal Damage Response in Radiation Dermatitis . | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2017 , 137 (8) , 1731-1739 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Chemotherapeutic agents induce complex tissue responses in vivo and damage normal organ functions. Here we use the feather follicle to investigate details of this damage response. We show that cyclophosphamide treatment, which causes chemotherapy-induced alopecia in mice and man, induces distinct defects in feather formation: feather branching is transiently and reversibly disrupted, thus leaving a morphological record of the impact of chemotherapeutic agents, whereas the rachis (feather axis) remains unperturbed. Similar defects are observed in feathers treated with 5-fluorouracil or taxol but not with doxorubicin or arabinofuranosyl cytidine (Ara-C). Selective blockade of cell proliferation was seen in the feather branching area, along with a downregulation of sonic hedgehog (Shh) transcription, but not in the equally proliferative rachis. Local delivery of the Shh inhibitor, cyclopamine, or Shh silencing both recapitulated this effect. In mouse hair follicles, those chemotherapeutic agents that disrupted feather formation also downregulated Shh gene expression and induced hair loss, whereas doxorubicin or Ara-C did not. Our results reveal a mechanism through which chemotherapeutic agents damage rapidly proliferating epithelial tissue, namely via the cell population specific, Shh-dependent inhibition of proliferation. This mechanism may be targeted by future strategies to manage chemotherapy-induced tissue damage.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xie, Guojiang , Wang, Hangwei , Yan, Zhipeng et al. Testing Chemotherapeutic Agents in the Feather Follicle Identifies a Selective Blockade of Cell Proliferation and a Key Role for Sonic Hedgehog Signaling in Chemotherapy-Induced Tissue Damage [J]. | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2015 , 135 (3) : 690-700 . |
MLA | Xie, Guojiang et al. "Testing Chemotherapeutic Agents in the Feather Follicle Identifies a Selective Blockade of Cell Proliferation and a Key Role for Sonic Hedgehog Signaling in Chemotherapy-Induced Tissue Damage" . | JOURNAL OF INVESTIGATIVE DERMATOLOGY 135 . 3 (2015) : 690-700 . |
APA | Xie, Guojiang , Wang, Hangwei , Yan, Zhipeng , Cai, Linyan , Zhou, Guixuan , He, Wanzhong et al. Testing Chemotherapeutic Agents in the Feather Follicle Identifies a Selective Blockade of Cell Proliferation and a Key Role for Sonic Hedgehog Signaling in Chemotherapy-Induced Tissue Damage . | JOURNAL OF INVESTIGATIVE DERMATOLOGY , 2015 , 135 (3) , 690-700 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Avian feathers have robust growth and regeneration capability. To evaluate the contribution of signaling molecules and pathways in these processes, we profiled gene expression in the feather follicle using an absolute quantification approach. We identified hundreds of genes that mark specific components of the feather follicle: the dermal papillae (DP) which controls feather regeneration and axis formation, the pulp mesenchyme (Pp) which is derived from DP cells and nourishes the feather follicle, and the ramogenic zone epithelium (Erz) where a feather starts to branch. The feather DP is enriched in BMP/TGF-beta signaling molecules and inhibitors for Wnt signaling including Dkk2/Frzb. Wnt ligands are mainly expressed in the feather epithelium and pulp. We find that while Wnt signaling is required for the maintenance of DP marker gene expression and feather regeneration, excessive Wnt signaling delays regeneration and reduces pulp formation. Manipulating Dkk2/Frzb expression by lentiviral-mediated overexpression, shRNA-knockdown, or by antibody neutralization resulted in dual feather axes formation. Our results suggest that the Wnt signaling in the proximal feather follicle is fine-tuned to accommodate feather regeneration and axis formation. (C) 2014 Elsevier Inc. All rights reserved.
Keyword :
Axis formation Axis formation Dermal papillae Dermal papillae Dkk2/Dkk3/Frzb Dkk2/Dkk3/Frzb Feather follicle Feather follicle Regeneration Regeneration
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chu, Qiqi , Cai, Linyan , Fu, Yu et al. Dkk2/Frzb in the dermal papillae regulates feather regeneration [J]. | DEVELOPMENTAL BIOLOGY , 2014 , 387 (2) : 167-178 . |
MLA | Chu, Qiqi et al. "Dkk2/Frzb in the dermal papillae regulates feather regeneration" . | DEVELOPMENTAL BIOLOGY 387 . 2 (2014) : 167-178 . |
APA | Chu, Qiqi , Cai, Linyan , Fu, Yu , Chen, Xi , Yan, Zhipeng , Lin, Xiang et al. Dkk2/Frzb in the dermal papillae regulates feather regeneration . | DEVELOPMENTAL BIOLOGY , 2014 , 387 (2) , 167-178 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, Xi , Liao, Chunyan , Chu, Qiqi et al. Dissecting the Molecular Mechanism of Ionizing Radiation-Induced Tissue Damage in the Feather Follicle [J]. | PLOS ONE , 2014 , 9 (2) . |
MLA | Chen, Xi et al. "Dissecting the Molecular Mechanism of Ionizing Radiation-Induced Tissue Damage in the Feather Follicle" . | PLOS ONE 9 . 2 (2014) . |
APA | Chen, Xi , Liao, Chunyan , Chu, Qiqi , Zhou, Guixuan , Lin, Xiang , Li, Xiaobo et al. Dissecting the Molecular Mechanism of Ionizing Radiation-Induced Tissue Damage in the Feather Follicle . | PLOS ONE , 2014 , 9 (2) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Background/Aims: We previously reported that porcine intramuscular (i.m.) preadipocytes were different from subcutaneous (s.c.) preadipocytes on cell differentiation and lipid accumulation, but the underlying mechanisms remained unknown. The paper aims to investigate the underlying mechanisms by comparing the differences between i.m. and s.c. preadipocytes in glucose utilization, lipid metabolism, and the role of BMP signaling pathway. Methods: Experiments were performed in porcine primary i.m. and s.c. preadipocytes in culture. The mRNA and protein expression patterns were determined respectively by Quantitative real-time PCR and Western blot. Cytosolic triglycerides were examined by triglyceride assay. Results: The i.m. preadipocytes consumed more glucose by expression of GLUT1 and s.c. preadipocytes mainly utilized exogenic fatty acids for lipid synthesis by expression of LPL and FAT. Meanwhile, the expression of genes related to lipogenesis and lipolysis in s.c. preadipocytes increased more quickly than those in i.m. preadipocytes. The expression patterns of the genes involved in BMP-Smad signaling pathway were consistent with those of the genes participated in adipocytes differentiation in both i.m. and s.c. preadipocytes. Exogenous BMP2 significantly increased, whereas Noggin and Compound C, remarkablely decreased the triglycerides content in i.m. preadipoytes, without affecting s.c. preadipocytes. BMP2 shRNA significantly reduced the mRNA levels of the downstream genes of BMP-Smad signaling pathway and PPAR. in both i.m. and s.c. preadipocytes. Conclusion: These findings suggested that the differentiation and lipid accumulation differences between i.m. and s.c. preadipocytes might be caused by the different manners of glucose utilization, lipid metabolism and the BMP-Smad signaling pathway. The special feature of i.m. adipocytes implied that these cells might be a potential target for treatment of diabetes. Copyright (C) 2013 S. Karger AG, Basel
Keyword :
BMP-Smad signaling pathway BMP-Smad signaling pathway Glucose utilization Glucose utilization Intramuscular preadipocytes Intramuscular preadipocytes Lipid metabolism Lipid metabolism Porcine Porcine Subcutaneous preadipocytes Subcutaneous preadipocytes
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Songbo , Zhou, Guixuan , Shu, Gang et al. Glucose Utilization, Lipid Metabolism and BMP-Smad Signaling Pathway of Porcine Intramuscular Preadipocytes Compared with Subcutaneous Preadipocytes [J]. | CELLULAR PHYSIOLOGY AND BIOCHEMISTRY , 2013 , 31 (6) : 981-996 . |
MLA | Wang, Songbo et al. "Glucose Utilization, Lipid Metabolism and BMP-Smad Signaling Pathway of Porcine Intramuscular Preadipocytes Compared with Subcutaneous Preadipocytes" . | CELLULAR PHYSIOLOGY AND BIOCHEMISTRY 31 . 6 (2013) : 981-996 . |
APA | Wang, Songbo , Zhou, Guixuan , Shu, Gang , Wang, Lina , Zhu, Xiaotong , Gao, Ping et al. Glucose Utilization, Lipid Metabolism and BMP-Smad Signaling Pathway of Porcine Intramuscular Preadipocytes Compared with Subcutaneous Preadipocytes . | CELLULAR PHYSIOLOGY AND BIOCHEMISTRY , 2013 , 31 (6) , 981-996 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |