• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:高伟

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 18 >
基于网格指纹匹配的光伏阵列电弧故障定位方法 CSCD PKU
期刊论文 | 2024 , 50 (2) , 834-845 | 高电压技术
Abstract&Keyword Cite

Abstract :

考虑到传统的基于电磁辐射(electromagnetic radiation,EMR)信号的光伏阵列电弧故障定位方法存在采样条件严苛、定位精度低等问题,提出一种基于网格指纹匹配的电弧故障定位新方法.首先,使用低采样率获取电弧EMR信号,并提取其均方根值作为代表EMR强度的特征指标.然后,利用BP神经网络(back propagation neural network,BPNN)挖掘辐照度、信号接收距离与电弧EMR信号强度的内在联系,建立预测模型.接着,根据BPNN输出的双天线阵列与电弧间的预测距离,利用三角定位法初步求得电弧所在区域.最后,网格化划分电弧所在区域的光伏组件,生成网格指纹信息,并将预测距离与指纹信息最匹配的网格的中心坐标作为电弧发生位置的最终预测坐标.实验结果表明,所提算法具备良好的定位能力与适应性,对电弧故障定位的平均绝对误差为0.306 m,在定位精度与经济性上均优于EMR衰减模型定位法.

Keyword :

BP神经网络 BP神经网络 光伏阵列 光伏阵列 电弧故障定位 电弧故障定位 电磁辐射 电磁辐射 网格指纹匹配 网格指纹匹配

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 金辉 , 高伟 , 林亮世 et al. 基于网格指纹匹配的光伏阵列电弧故障定位方法 [J]. | 高电压技术 , 2024 , 50 (2) : 834-845 .
MLA 金辉 et al. "基于网格指纹匹配的光伏阵列电弧故障定位方法" . | 高电压技术 50 . 2 (2024) : 834-845 .
APA 金辉 , 高伟 , 林亮世 , 杨耿杰 . 基于网格指纹匹配的光伏阵列电弧故障定位方法 . | 高电压技术 , 2024 , 50 (2) , 834-845 .
Export to NoteExpress RIS BibTex

Version :

不均衡小样本下多特征优化选择的生命体触电故障识别方法 CSCD PKU
期刊论文 | 2024 , 39 (07) , 2060-2071 | 电工技术学报
Abstract&Keyword Cite

Abstract :

针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时域上提取能够反映波形动态变化特性的23个特征量,并利用高斯核Fisher判别分析(GKFDA)与最大信息系数(MIC)法从中选择最优表达特征组;最后,提出基于遗忘因子的在线顺序极限学习机(FOS-ELM)算法实现生命体触电行为的鉴别。实验结果表明,所提方法利用不均衡小样本触电数据集就可以训练出一个优秀的分类模型,诊断准确率可达98.75%,诊断时间仅为1.33ms。其优良的性能结合在线增量式学习分类器设计,使得模型具备新知识学习能力,具有极好的工程应用前景。

Keyword :

不均衡小样本 不均衡小样本 剩余电流保护装置 剩余电流保护装置 基于遗忘因子的在线顺序极限学习机(FOS-ELM) 基于遗忘因子的在线顺序极限学习机(FOS-ELM) 多特征优化选择 多特征优化选择 生命体触电故障 生命体触电故障

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 高伟 , 饶俊民 , 全圣鑫 et al. 不均衡小样本下多特征优化选择的生命体触电故障识别方法 [J]. | 电工技术学报 , 2024 , 39 (07) : 2060-2071 .
MLA 高伟 et al. "不均衡小样本下多特征优化选择的生命体触电故障识别方法" . | 电工技术学报 39 . 07 (2024) : 2060-2071 .
APA 高伟 , 饶俊民 , 全圣鑫 , 郭谋发 . 不均衡小样本下多特征优化选择的生命体触电故障识别方法 . | 电工技术学报 , 2024 , 39 (07) , 2060-2071 .
Export to NoteExpress RIS BibTex

Version :

基于递归径向基神经网络滑模的多功能柔性多状态开关控制方法
期刊论文 | 2024 , 25 (05) , 11-21 | 电气技术
Abstract&Keyword Cite

Abstract :

近年来,新能源和电动汽车的渗透比例逐渐增高,给配电网的潮流优化和电能质量治理带来严峻挑战。针对分布式电源的随机性和间歇性问题,设计一种基于递归径向基神经网络(RRBFNN)滑模的多功能柔性多状态开关(FMS)控制方法,在实现功率交互和多端单相接地故障柔性消弧的同时,增强FMS的抗扰能力。首先考虑扰动的影响,设计一种改进RRBFNN滑模控制方法,以克服传统滑模控制固有的抖振现象和对系统精确数学模型的依赖,并减小并网暂态冲击;柔性消弧控制采用微积分型滑模面,理论推导出0轴电压控制律,提高故障电流抑制率;进一步通过李雅普诺夫定理证明所设计方法的稳定性和收敛性。最后,在Matlab/Simulink中搭建三端口FMS及其控制系统的仿真模型,通过对比仿真验证了所提策略的可行性和有效性。

Keyword :

单相接地故障 单相接地故障 径向基神经网络(RBFNN) 径向基神经网络(RBFNN) 柔性多状态开关(FMS) 柔性多状态开关(FMS) 柔性消弧 柔性消弧 滑模控制 滑模控制 配电网 配电网

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 廖江华 , 高伟 , 唐钧益 et al. 基于递归径向基神经网络滑模的多功能柔性多状态开关控制方法 [J]. | 电气技术 , 2024 , 25 (05) : 11-21 .
MLA 廖江华 et al. "基于递归径向基神经网络滑模的多功能柔性多状态开关控制方法" . | 电气技术 25 . 05 (2024) : 11-21 .
APA 廖江华 , 高伟 , 唐钧益 , 杨耿杰 . 基于递归径向基神经网络滑模的多功能柔性多状态开关控制方法 . | 电气技术 , 2024 , 25 (05) , 11-21 .
Export to NoteExpress RIS BibTex

Version :

基于CRITIC-TOPSIS的配电站房运行状态评估
期刊论文 | 2024 , 6 (03) , 38-43 | 电工电气
Abstract&Keyword Cite

Abstract :

实现配电站房运行状态的准确评估对确保电力系统的稳定运行有着重要的意义。针对目前评估方法主观性过强的问题,提出了一种基于CRITIC-TOPSIS的配电站房运行状态评估方法。基于压力-状态-响应(PSR)框架的思维模式,建立科学合理的配电站房运行状态评估指标体系,采用CRITIC赋权法确定各评价指标的权重,减少评价过程中的主观性,建立CRITIC-TOPSIS评价模型,利用综合接近度评估配电站房相对运行状态,并确定状态等级;引入禀赋效应来根据决策者的心理行为对评价结果进行调整,并对配电站房状态情况进行优劣排序;根据某地区配电站房实际运行数据进行实例分析,所得评价结果具有客观性和合理性。

Keyword :

CRITIC-TOPSIS评价模型 CRITIC-TOPSIS评价模型 压力-状态-响应框架 压力-状态-响应框架 状态评估 状态评估 禀赋效应 禀赋效应 配电站房 配电站房

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 罗昆 , 高伟 , 洪翠 . 基于CRITIC-TOPSIS的配电站房运行状态评估 [J]. | 电工电气 , 2024 , 6 (03) : 38-43 .
MLA 罗昆 et al. "基于CRITIC-TOPSIS的配电站房运行状态评估" . | 电工电气 6 . 03 (2024) : 38-43 .
APA 罗昆 , 高伟 , 洪翠 . 基于CRITIC-TOPSIS的配电站房运行状态评估 . | 电工电气 , 2024 , 6 (03) , 38-43 .
Export to NoteExpress RIS BibTex

Version :

Control method based on DRFNN sliding mode for multifunctional flexible multistate switch EI CSCD
期刊论文 | 2024 , 7 (2) , 190-205 | Global Energy Interconnection
Abstract&Keyword Cite

Abstract :

To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation, a control method involving flexible multistate switches (FMSs) is proposed in this study. This approach is based on an improved double-loop recursive fuzzy neural network (DRFNN) sliding mode, which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults. First, an improved DRFNN sliding mode control (SMC) method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system. To improve the robustness of the system, an adaptive parameter-adjustment strategy for the DRFNN is designed, where its dynamic mapping capabilities are leveraged to improve the transient compensation control. Additionally, a quasi-continuous second- order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability. The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem. A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink. The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis. © 2024

Keyword :

Adaptive control systems Adaptive control systems Electric arcs Electric arcs Electric grounding Electric grounding Electric power distribution Electric power distribution Fuzzy inference Fuzzy inference Fuzzy neural networks Fuzzy neural networks MATLAB MATLAB Sliding mode control Sliding mode control System stability System stability

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liao, Jianghua , Gao, Wei , Yang, Yan et al. Control method based on DRFNN sliding mode for multifunctional flexible multistate switch [J]. | Global Energy Interconnection , 2024 , 7 (2) : 190-205 .
MLA Liao, Jianghua et al. "Control method based on DRFNN sliding mode for multifunctional flexible multistate switch" . | Global Energy Interconnection 7 . 2 (2024) : 190-205 .
APA Liao, Jianghua , Gao, Wei , Yang, Yan , Yang, Gengjie . Control method based on DRFNN sliding mode for multifunctional flexible multistate switch . | Global Energy Interconnection , 2024 , 7 (2) , 190-205 .
Export to NoteExpress RIS BibTex

Version :

Photovoltaic Array Arc Faults Location Method Based on Grid Fingerprint Matching EI CSCD PKU
期刊论文 | 2024 , 50 (2) , 805-815 | High Voltage Engineering
Abstract&Keyword Cite

Abstract :

The problems of strict sampling conditions and low positioning accuracy exist in the traditional photovoltaic array arc fault location method based on electromagnetic radiation (EMR) signal, accordingly, we propose a new arc fault location method based on grid fingerprint matching. Firstly, the EMR signal of the arc is acquired with a low sampling rate, and its root mean square value is extracted as the characteristic index representing the EMR intensity. Then, BP neural network (BPNN) is adopted to mine the internal relationship among irradiance, signal receiving distance and arc EMR signal intensity, and a prediction model is established. Subsequently, according to the predicted distance between the dual-antenna array output by BPNN and the arc, the area where the arc is located is preliminarily acquired by using the triangulation method. Finally, the photovoltaic module in the located area is divided into grids to generate grid fingerprint information, and the center coordinate of the grid that most matches the predicted distance and fingerprint information is taken as the final predicted coordinate of the arc occurrence position. The experiment results show that the proposed algorithm has good positioning ability and adaptability, and the average absolute error of arc fault location is 0.306 m, which is superior to the EMR attenuation model positioning method in positioning accuracy and economy. © 2024 Science Press. All rights reserved.

Keyword :

Antenna arrays Antenna arrays Backpropagation Backpropagation Electromagnetic wave emission Electromagnetic wave emission Location Location Neural networks Neural networks Pattern matching Pattern matching

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Jin, Hui , Gao, Wei , Lin, Liangshi et al. Photovoltaic Array Arc Faults Location Method Based on Grid Fingerprint Matching [J]. | High Voltage Engineering , 2024 , 50 (2) : 805-815 .
MLA Jin, Hui et al. "Photovoltaic Array Arc Faults Location Method Based on Grid Fingerprint Matching" . | High Voltage Engineering 50 . 2 (2024) : 805-815 .
APA Jin, Hui , Gao, Wei , Lin, Liangshi , Yang, Gengjie . Photovoltaic Array Arc Faults Location Method Based on Grid Fingerprint Matching . | High Voltage Engineering , 2024 , 50 (2) , 805-815 .
Export to NoteExpress RIS BibTex

Version :

Electric Shock Accident Detection Method Based on Ensemble Decision Trees Boosting for Feature Selection Scopus
其他 | 2024 , 795-800
Abstract&Keyword Cite

Abstract :

To address the existing issue of electric shock incidents that cannot be accurately identified by current leakage protection devices, this paper presents a novel electric shock accident recognition method. Firstly, the method of singular spectrum analysis (SSA) is employed to extract the main components of leakage recording data. Subsequently, 20 temporal domain features of the leakage current waveform are extracted. Then, an ensemble learning model based on extreme gradient boosting (XGBoost), categorical boosting (CatBoost) and random forest (RF), is established to select optimal features that best represent the sample characteristics from the feature set. Finally, support vector machine (SVM) is used to classify the extracted dataset. Experimental results demonstrate that this method can rapidly differentiate between electric shock faults and common leakage faults, achieving an accuracy rate as high as 99%, indicating its feasibility. © 2024 IEEE.

Keyword :

electric shock faults identification electric shock faults identification feature selection feature selection leakage protection device leakage protection device singular spectrum analysis (SSA) singular spectrum analysis (SSA)

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Chen, Y.-L. , Gao, W. , Rao, J.-M. et al. Electric Shock Accident Detection Method Based on Ensemble Decision Trees Boosting for Feature Selection [未知].
MLA Chen, Y.-L. et al. "Electric Shock Accident Detection Method Based on Ensemble Decision Trees Boosting for Feature Selection" [未知].
APA Chen, Y.-L. , Gao, W. , Rao, J.-M. , Guo, M.-F. , Zheng, Z.-Y. . Electric Shock Accident Detection Method Based on Ensemble Decision Trees Boosting for Feature Selection [未知].
Export to NoteExpress RIS BibTex

Version :

考虑群体决策差异冲突解决机制的配电站房健康状态评估方法 CSCD PKU
期刊论文 | 2024 , 52 (10) , 167-178 | 电力系统保护与控制
Abstract&Keyword Cite

Abstract :

针对配电站房缺乏健康评估机制、运维周期设置不合理的问题,提出了一种考虑群体决策差异冲突解决机制的配电站房健康状态综合评估方法.首先,建立配电站房指标体系和专家评价框架,设计了一种新型的二元冲突测量函数来量化全局冲突.然后,使用专家评价结果的虚假度、可信度、可用度等测度指标构造专家修正因子,以改进 D-S 证据理论,通过聚合不同专家的评价意见来量化评价指标的权重.接着,建立改进灰色关联度-逼近理想解法(grey relation analysis-technique for order preference by similarity to an ideal solution,GRA-TOPSIS)评估模型,引入灰色关联接近度,与距离接近度融合得到综合接近度,改善TOPSIS 评价判据片面性的缺陷.最后,计算每个配电站房的评价值与理想解之间的综合接近度,反映配电站房的健康状态.实验分析表明该方法能兼容专家评价之间的冲突性、差异性、不确定性,与现有方法相比评估结果更具准确性和合理性,对运维人员制定合理的检修决策具有一定的指导价值.

Keyword :

专家修正因子 专家修正因子 专家评价框架 专家评价框架 改进D-S证据理论 改进D-S证据理论 改进GRA-TOPSIS评估方法 改进GRA-TOPSIS评估方法 配电站房 配电站房

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 罗昆 , 高伟 , 洪翠 . 考虑群体决策差异冲突解决机制的配电站房健康状态评估方法 [J]. | 电力系统保护与控制 , 2024 , 52 (10) : 167-178 .
MLA 罗昆 et al. "考虑群体决策差异冲突解决机制的配电站房健康状态评估方法" . | 电力系统保护与控制 52 . 10 (2024) : 167-178 .
APA 罗昆 , 高伟 , 洪翠 . 考虑群体决策差异冲突解决机制的配电站房健康状态评估方法 . | 电力系统保护与控制 , 2024 , 52 (10) , 167-178 .
Export to NoteExpress RIS BibTex

Version :

基于改进动态时间规整的直流电动机驱动负荷开关卡涩故障辨识
期刊论文 | 2024 , 25 (06) , 31-38,55 | 电气技术
Abstract&Keyword Cite

Abstract :

负荷开关在动作过程中可能会发生卡涩现象,其储能电动机电流形态能有效反映开关的机械状态。因此,本文提出一种基于改进动态时间规整(IDTW)的负荷开关卡涩故障检测方法。首先,利用滑动均值滤波实时处理电动机电流信号,滤除干扰信号。其次,制定动作电流的录波启动和停止判据,以确保记录完整的电动机动作电流。随后,通过距离公式调整、算法加速和存储空间优化对动态时间规整(DTW)进行改进。以开关正常状态的电流信号为标准波形,利用IDTW计算对比波形与标准波形的标准化距离,并制定边界阈值实现对开关状态的辨识。最后,设计一套在线诊断终端,实现所提算法的工程化。实验结果表明,所提方法具有较强的适应性,对两种型号的负荷开关均能实现正确录波,辨识准确率分别达到99%和99.37%,所设计的在线诊断终端能够在较短时间内完成对负荷开关卡涩状态的辨识。

Keyword :

动态时间规整(DTW) 动态时间规整(DTW) 卡涩故障 卡涩故障 存储空间优化 存储空间优化 工程化实现 工程化实现 负荷开关 负荷开关

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 黄海燕 , 高伟 , 邱仕达 et al. 基于改进动态时间规整的直流电动机驱动负荷开关卡涩故障辨识 [J]. | 电气技术 , 2024 , 25 (06) : 31-38,55 .
MLA 黄海燕 et al. "基于改进动态时间规整的直流电动机驱动负荷开关卡涩故障辨识" . | 电气技术 25 . 06 (2024) : 31-38,55 .
APA 黄海燕 , 高伟 , 邱仕达 , 杨耿杰 . 基于改进动态时间规整的直流电动机驱动负荷开关卡涩故障辨识 . | 电气技术 , 2024 , 25 (06) , 31-38,55 .
Export to NoteExpress RIS BibTex

Version :

一种基于经验模态分解和局部极大值点数的配电网高阻接地故障检测方法
期刊论文 | 2024 , 25 (06) , 14-23 | 电气技术
Abstract&Keyword Cite

Abstract :

配电网高阻接地故障(HIF)因故障特征微弱而难以被常规装置检测到,容易引发过电压、火灾和人身触电等安全问题。本文提出一种将时频分解和阈值判断结合的HIF识别方法。首先,利用经验模态分解(EMD)对零序电流进行处理;然后,选取第二个固有模态分量(IMF)作为特征分量并进行高斯滤波;最后,统计特征分量的局部极大值点的个数来判断是否发生HIF。利用PSCAD/EMTDC软件搭建10kV配电网模型进行算法验证。仿真结果表明,所提方法能够以较高的准确率将HIF和一些常见的干扰事件区分开,并且在发生噪声干扰、采样率变化、系统中性点接地方式改变及系统网络结构改变的情况下,均表现出较好的适应性。

Keyword :

局部极大值点数 局部极大值点数 经验模态分解(EMD) 经验模态分解(EMD) 配电网 配电网 高阻接地故障(HIF) 高阻接地故障(HIF)

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 唐钧益 , 曾肖枫 , 高伟 . 一种基于经验模态分解和局部极大值点数的配电网高阻接地故障检测方法 [J]. | 电气技术 , 2024 , 25 (06) : 14-23 .
MLA 唐钧益 et al. "一种基于经验模态分解和局部极大值点数的配电网高阻接地故障检测方法" . | 电气技术 25 . 06 (2024) : 14-23 .
APA 唐钧益 , 曾肖枫 , 高伟 . 一种基于经验模态分解和局部极大值点数的配电网高阻接地故障检测方法 . | 电气技术 , 2024 , 25 (06) , 14-23 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 18 >

Export

Results:

Selected

to

Format:
Online/Total:674/7275644
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1