• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship
Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 1 >
Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation SCIE
期刊论文 | 2024 , 178 , 57-65 | WASTE MANAGEMENT
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

An annual production of about 500 million tons of household food waste (HFW) has been documented, resulting in significant implications for human health and the environment in the absence of appropriate treatment. The anaerobic fermentation of HFW in an open system offers the potential to recover high value-added products, lactic acid (LA), thereby simultaneously addressing waste treatment and enhancing resource recovery efficiency. Most of LA fermentation studies have been conducted under mesophilic and thermophilic conditions, with limited research on the production of LA through anaerobic fermentation under hyperthermophilic conditions. This study aimed to produce LA through anaerobic fermentation from HFW under hyperthermophilic conditions (70 +/- 1 degrees C), while varying pH values (5.0 +/- 0.1, 7.0 +/- 0.1, and 9.0 +/- 0.1), and compare the results with LA production under mesophilic (35 +/- 1 degrees C) and thermophilic (52 +/- 1 degrees C) conditions. The findings of this study indicated that the combination of hyperthermophilic conditions and a neutral pH (pH7_70) yielded the highest concentration of LA, measuring at 17.75 +/- 1.51 g/L. The mechanism underlying the high yield of LA at 70 degrees C was elucidated through the combined analysis of organics dissolution, enzymes activities, and 16S rRNA microbiome sequencing.

Keyword :

Anaerobic fermentation Anaerobic fermentation Household food waste Household food waste Hyperthermophilic condition Hyperthermophilic condition Lactic acid Lactic acid Lactobacillus Lactobacillus

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Song, Liang , Cai, Chenhang , Lin, Chunxiang et al. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation [J]. | WASTE MANAGEMENT , 2024 , 178 : 57-65 .
MLA Song, Liang et al. "Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation" . | WASTE MANAGEMENT 178 (2024) : 57-65 .
APA Song, Liang , Cai, Chenhang , Lin, Chunxiang , Lv, Yuancai , Liu, Yifan , Ye, Xiaoxia et al. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation . | WASTE MANAGEMENT , 2024 , 178 , 57-65 .
Export to NoteExpress RIS BibTex

Version :

Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water SCIE
期刊论文 | 2024 , 1721 | JOURNAL OF CHROMATOGRAPHY A
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

Developing adsorbents with high performance and long service life for effective extracting the trace organochlorine pesticides (OCPs) from real water is attracting numerous attentions. Herein, a self-standing covalent organic framework (COF-TpPa) membrane with fiber morphology was successfully synthesized by using electrospun nanofiber membranes as template and employed as solid-phase microextraction (SPME) coating for ultra-high sensitivity extraction and analysis of trace OCPs in water. The as-synthesized COF-TpPa membrane exhibited a high specific surface area (800.83 m(2) g(-1)), stable nanofibrous structure, and excellent chemical and thermal stability. Based on the COF-TpPa membrane, a new SPME analytical method in conjunction with gas chromatography-mass spectrometry (GC-MS) was established. This proposed method possessed favorable linearity in concentration of 0.05-2000 ng L-1, high sensitivity with enrichment factors ranging from 2175 to 5846, low limits of detection (0.001-0.150 ng L-1), satisfactory precision (RSD < 10 %), and excellent repeatability (>150 cycles), which was better than most of the reported works. Additionally, the density functional theory (DFT) calculations and XPS results demonstrated that the outstanding enrichment performance of the COF-TpPa membrane was owing to synergistic effect of pi-pi stacking effects, high specific surface area and hydrogen bonding. This work will expect to extend the applications of COF membrane to captures trace organic pollutants in complex environmental water, as well as offer a multiscale interpretation for the design of effective adsorbents.

Keyword :

Covalent organic framework nanofibrous Covalent organic framework nanofibrous Direct immersion solid-phase microextraction Direct immersion solid-phase microextraction Gas chromatography-mass spectrometry Gas chromatography-mass spectrometry membrane membrane Organochlorine pesticides Organochlorine pesticides

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Chunxiang , Weng, Yufang , Lin, Yule et al. Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water [J]. | JOURNAL OF CHROMATOGRAPHY A , 2024 , 1721 .
MLA Lin, Chunxiang et al. "Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water" . | JOURNAL OF CHROMATOGRAPHY A 1721 (2024) .
APA Lin, Chunxiang , Weng, Yufang , Lin, Yule , Liu, Yifan , Li, Xiaojuan , Lv, Yuancai et al. Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water . | JOURNAL OF CHROMATOGRAPHY A , 2024 , 1721 .
Export to NoteExpress RIS BibTex

Version :

Efficient dispersive solid phase extraction of trace nitrophenol pollutants in water with triazine porous organic polymer modified nanofiber membrane SCIE
期刊论文 | 2024 , 1717 | JOURNAL OF CHROMATOGRAPHY A
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

Detecting trace endocrine disruptors in water is crucial for evaluating the water quality. In this work, a innovative modified polyacrylonitrile@cyanuric chloride-triphenylphosphine nanofiber membrane (PAN@CC-TPS) was prepared by in situ growing triazine porous organic polymers on the polyacrylonitrile (PAN) nanofibers, and used in the dispersive solid phase extraction (DSPE) to enrich trace nitrobenzene phenols (NPs) in water. The resluted PAN@CC-TPS nanofiber membrane consisted of numerous PAN nanofibers cover with CC-TPS solid spheres (similar to 2.50 mu m) and owned abundant functional groups, excellent enrichment performance and good stability. In addition, the method based on PAN@CC-TPS displayed outstanding capacity in detecting the trace nitrobenzene phenols, with 0.50-1.00 mu g/L of the quantification, 0.10-0.80 mu g/L of the detection limit, 85.35-113.55 % of the recovery efficiency, and 98.08-103.02 of the enrichment factor, which was comparable to most materials. Meanwhile, when PAN@CC-TPS was adopted in the real water samples (sea water and river water), the high enrichment factors and recovery percentages strongly confirmed the feasibility of PAN@CC-TPS for enriching and detecting the trace NPs. Besides, the related mechanism of extracting NPs on PAN@CC-TPS mainly involved the synergistic effect of hydrogen bonding, pi-pi stacking and hydrophobic effect.

Keyword :

Adsorption Adsorption Dispersive solid phase extraction Dispersive solid phase extraction Enrichment Enrichment Nanofiber membrane Nanofiber membrane Nitro-phenol Nitro-phenol Triazine Triazine

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Weng, Xin , Liu, Shuting , Huang, Jian et al. Efficient dispersive solid phase extraction of trace nitrophenol pollutants in water with triazine porous organic polymer modified nanofiber membrane [J]. | JOURNAL OF CHROMATOGRAPHY A , 2024 , 1717 .
MLA Weng, Xin et al. "Efficient dispersive solid phase extraction of trace nitrophenol pollutants in water with triazine porous organic polymer modified nanofiber membrane" . | JOURNAL OF CHROMATOGRAPHY A 1717 (2024) .
APA Weng, Xin , Liu, Shuting , Huang, Jian , Lv, Yuancai , Liu, Yifan , Li, Xiaojuan et al. Efficient dispersive solid phase extraction of trace nitrophenol pollutants in water with triazine porous organic polymer modified nanofiber membrane . | JOURNAL OF CHROMATOGRAPHY A , 2024 , 1717 .
Export to NoteExpress RIS BibTex

Version :

Lactic acid production from food waste: Advances in microbial fermentation and separation technologies EI
期刊论文 | 2024 , 414 | Bioresource Technology
Abstract&Keyword Cite

Abstract :

China generates over 100 million tons of food waste annually, leading to significant environmental pollution and health risks if not managed properly. Converting FW into a high-value-added platform molecule, lactic acid (LA), through fermentation offers a promising approach for both waste treatment and resource recovery. This paper presents a comprehensive review of recent advancements in LA production from FW, focusing on pure strains fermentation and open fermentation technologies, metabolic mechanisms, and problems in fermentation. It also assesses purification methods, including molecular distillation, adsorption, membrane separation, precipitation, esterification and hydrolysis, solvent extraction, and in-situ separation, analyzing their efficiency, advantages, and disadvantages. However, current research encounters several challenges, including low LA yield, low optical purity of L-(+)-LA, and difficulties in the separation and purification of LA. The integration of in-situ separation technology coupled with multiple separation methods is highlighted as a promising direction for future advancements. © 2024 Elsevier Ltd

Keyword :

Distillation Distillation

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Song, Liang , Cai, Chenhang , Chen, Zengpeng et al. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies [J]. | Bioresource Technology , 2024 , 414 .
MLA Song, Liang et al. "Lactic acid production from food waste: Advances in microbial fermentation and separation technologies" . | Bioresource Technology 414 (2024) .
APA Song, Liang , Cai, Chenhang , Chen, Zengpeng , Lin, Chunxiang , Lv, Yuancai , Ye, Xiaoxia et al. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies . | Bioresource Technology , 2024 , 414 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 1 >

Export

Results:

Selected

to

Format:
Online/Total:805/7275789
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1