Query:
学者姓名:尹旺
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
To cope with small production quantities of specialized chemicals, modular production plants have gained increasing attention in recent years. Zero-gravity distillation (ZGD) is a small-scale distillation process, which offers high separation efficiency, proving advantageous for modularizing processes. In this research, the study of ZGD process intensification is conducted. A ZGD experimental setup was established and the separation of ethanol/water mixtures was chosen as an example to investigate the effects of metal foam material, liquid filling rate, and PPI of metal foam on the separation performance, which was quantified by height equivalent to a theoretical plate (HETP). The results reveal that under constant feed volume (50 ml) and the mole fraction of ethanol (0.2), employing 40 PPI copper foam and 100 % liquid filling rate results in HETP of 5.56 cm for ZGD unit, demonstrating superior separation performance. Subsequently, an optimization strategy adopting sandwich internal structure with ordered hierarchical meta foam is proposed to further intensify the separation process. In contrast to the case of employing 40 PPI copper foam and liquid filling rate of 100 %, the optimization strategy can further reduce HETP by approximately 18.17 %, being 4.55 cm. This finding provides a theoretical foundation and technical guidance for developing zero-gravity distillation technology.
Keyword :
Height equivalent to a theoretical plate (HETP) Height equivalent to a theoretical plate (HETP) Ordered hierarchical metal foam Ordered hierarchical metal foam Process intensification Process intensification Sandwich internal structure Sandwich internal structure Separation performance Separation performance Zero-gravity distillation (ZGD) Zero-gravity distillation (ZGD)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Yixiong , Huang, Zhibin , Jiang, Pengze et al. Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 . |
MLA | Lin, Yixiong et al. "Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam" . | SEPARATION AND PURIFICATION TECHNOLOGY 360 (2025) . |
APA | Lin, Yixiong , Huang, Zhibin , Jiang, Pengze , Wang, Qinglian , Yin, Wang , Yang, Chen et al. Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam . | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The C2-O cleavage of furanic ring is the crucial step in selective hydrogenation of furfuryl alcohol (FOL) to 1,5pentanediol (1,5-PDO). In this study, reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy (Ov) and different Co/Ni molar ratios were prepared through intercalation modification of Co-based hydrotalcite by ammonium citrate (CA), followed by calcination and reduction. The catalytic performance exhibited that a quantitative conversion of FOL with 44.4 % yield and 8.2 mmol1,5-PDO & sdot;gcat -1 & sdot;h- 1 productivity of 1,5-PDO were achieved by using Co2Ni1Al1Ox-CA(0.1) (molar ratio of Co:Ni = 2:1; molar concentration ratio of CA:Na2CO3 = 0.1) under optimal conditions. The stability test showed that Co2Ni1Al1Ox-CA(0.1) consistently rendered above 40 % yield of 1,5-PDO in seven consecutive cycles. Catalyst characterizations were carried out using a series of techniques including XPS, EPR, O2-TPD, etc. The results demonstrate that the addition of CA effectively altered the surface molar ratios of Co2+/(Co2++Co3+), thereby regulating the Ov content of the obtained catalysts. The CoO-Ov sites in the catalyst might enhance the adsorption of FOL by eta 1-(O)-alcoholic model, which weakened C2O bond on the furanic ring of FOL. Besides, the H2-TPD anslysis confirmed that the enhanced spillover of hydrogen from Ni0 onto CoO-Ov site, thereby promoting the cleavage of the C2-O bond in FOL and subsequent hydrogenation of enol intermediates. In addition, the DFT calculations imply that FOL adsorption on CoO-Ov site by eta 1-(O)-alcoholic model was significantly favorable than that on pristine CoO sites (-1.68 eV versus -1.55 eV). Consequently, this study has substantiated the crucial role played by CoO-Ov in the reaction pathway leading to 1,5-PDO formation via FOL, proposing a viable scheme for designing catalysts based on transition metals and elucidating their underlying reaction mechanism.
Keyword :
1,5-pentanediol 1,5-pentanediol Furfuryl alcohol Furfuryl alcohol Oxygen vacancy Oxygen vacancy Reduced mixed metal oxide catalysts Reduced mixed metal oxide catalysts Selective hydrogenation Selective hydrogenation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xi, Nan , Li, Qiwang , Chen, Yi et al. Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 . |
MLA | Xi, Nan et al. "Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol" . | CHEMICAL ENGINEERING JOURNAL 512 (2025) . |
APA | Xi, Nan , Li, Qiwang , Chen, Yi , Bao, Ruixi , Wang, Qinglian , Lin, Yixiong et al. Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol . | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Dry reforming of methane (DRM), which is a viable approach for carbon capture and utilization, is notably inclined towards carbon deposition due to the formation of cold spots, causing catalyst rapid deactivation, thereby limiting its industrial application. In order to prevent catalyst coking, it is imperative to improve the heat and mass transfer processes in DRM reactors. A foam reactor with hierarchical pore structure was proposed in this work, which is composed of fine and coarse pores and avoids contact thermal resistance due to the contact of foam structures with different pore sizes. Based on lattice Boltzmann model, this work investigated the impact of hierarchical pore structure on the heat and mass transfer, as well as DRM reaction in Ni/Al2O3 based foam reactors. The findings suggest an optimal overall heat transfer coefficient with the variation of dcoarse/dfine under equal pumping power. Furthermore, it reveals a synergistic mechanism between the heat and mass transfer processes, identifying an optimal hierarchical pore structure which, compared to uniform fine and coarse pore structures, facilitates an enhancement in reaction performance by 14.1 % and 13.0 %, respectively. This work provides a theoretical foundation and technical direction for the design of foam reactors.
Keyword :
Dry reforming of methane Dry reforming of methane Foam reactor Foam reactor Heat and mass transfer Heat and mass transfer Hierarchical pore structure Hierarchical pore structure Lattice Boltzmann method Lattice Boltzmann method
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Yixiong , Yu, Minkai , Wang, Qinglian et al. Unraveling the structure-performance relationship of foam reactor with hierarchical pore structure for dry reforming of methane reaction [J]. | FUEL , 2025 , 389 . |
MLA | Lin, Yixiong et al. "Unraveling the structure-performance relationship of foam reactor with hierarchical pore structure for dry reforming of methane reaction" . | FUEL 389 (2025) . |
APA | Lin, Yixiong , Yu, Minkai , Wang, Qinglian , Zhang, Wei , Yin, Wang , Yang, Chen et al. Unraveling the structure-performance relationship of foam reactor with hierarchical pore structure for dry reforming of methane reaction . | FUEL , 2025 , 389 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Catalytic hydrotreatment is a promising technique to upgrade pyrolysis liquids (PLs) with undesired properties into intermediate that can be co-processed with vacuum gas oil in FCC refinery. Highly active catalysts are key in such a process. In this study, a ruthenium-based catalyst possessing both single-atomic and nanocluster sites supported on hierarchically porous nitrogen-doped carbon (Ru1+NPs/HPNC) was prepared by a two-step alcohol reduction method. Catalytic performance was evaluated for both model compound vanillin (VL) and PLs in a batch autoclave. The model compound study showed that Ru1+NPs/HPNC exhibited excellent intrinsic activity in VL hydrogenation, with a TOF of 26.9 s−1, which is approximately 3 times higher than that of Ru1/HPNC (8.4 s−1) and RuNPs/HPNC (8.8 s−1), and 6 times that of Ru/AC (4.2 s−1). Catalytic hydrotreatment of PLs indicated that Ru1+NPs/HPNC possessed the best activity regarding to the highest H/C ratio (mild hydrotreatment: 1.33; deep hydrotreatment: 1.29) and the lowest TG residue (mild hydrotreatment: 14.4 wt%; deep hydrotreatment: 6.5 wt%) of the product oils. To obtain understanding of the synergistic effect between single-atoms and nanoclusters, the adsorption of VL and H2 on the catalyst was examined by ATR-FTIR and DFT calculations. The results revealed that VL is preferentially adsorbed and activated on the single-atomic sites, while the H2 is preferentially dissociated on the nanocluster sites. Based on these findings, a plausible mechanism is proposed. This study offers new ideas for developing better-performing catalysts for catalytic hydrotreatment of PLs. © 2025 Elsevier Ltd
Keyword :
Nanocatalysts Nanocatalysts Nanoclusters Nanoclusters Pyrolysis Pyrolysis
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhu, Xingchao , Gan, Zhiwei , Wang, Yueqi et al. The synergistic effect between Ru single-atomic sites and nanoclusters during catalytic hydrotreatment of fast pyrolysis liquids from lignocellulosic biomass [J]. | Chemical Engineering Science , 2025 , 315 . |
MLA | Zhu, Xingchao et al. "The synergistic effect between Ru single-atomic sites and nanoclusters during catalytic hydrotreatment of fast pyrolysis liquids from lignocellulosic biomass" . | Chemical Engineering Science 315 (2025) . |
APA | Zhu, Xingchao , Gan, Zhiwei , Wang, Yueqi , Xi, Nan , Wang, Qinglian , Lin, Yixiong et al. The synergistic effect between Ru single-atomic sites and nanoclusters during catalytic hydrotreatment of fast pyrolysis liquids from lignocellulosic biomass . | Chemical Engineering Science , 2025 , 315 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
This work underscores the critical importance of enhancing the mass transfer performance of catalyst particles for the production of n-butyl levulinate (BL) from levulinic acid (LA). The lattice Boltzmann method was proposed to investigate the relationship between pore structure and mass transfer, thereby guiding the rational design of high-performance catalyst. Furthermore, a novel catalyst regulation strategy was introduced, utilizing UiO-66 as a template to fabricate a series of catalysts, UiOxD40H160-SO3H. This strategy allows for the regulation of the pore structure of resin catalysts over a broader range and successfully enhanced the mass transfer performance. Among the synthesized catalysts, the LA conversion efficiency with UiO0.4D40H160-SO3H under mild reaction conditions increased by an average of 18.1% compared to the previously reported best-performing Dowex 50Wx2 resin catalyst. These findings provide valuable new insights into the production of BL while also highlighting the potential of the proposed catalyst design strategy for industrial applications. © 2025 Elsevier Ltd
Keyword :
Crystal lattices Crystal lattices Diffusion in liquids Diffusion in liquids Diffusion in solids Diffusion in solids Osmosis Osmosis Thermal diffusion Thermal diffusion
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xiong, Peiyun , Shi, Yong , Yang, Chen et al. Pore structure design and mass transfer optimization of resin catalysts based on lattice Boltzmann method for n-butyl levulinate synthesis [J]. | Chemical Engineering Science , 2025 , 314 . |
MLA | Xiong, Peiyun et al. "Pore structure design and mass transfer optimization of resin catalysts based on lattice Boltzmann method for n-butyl levulinate synthesis" . | Chemical Engineering Science 314 (2025) . |
APA | Xiong, Peiyun , Shi, Yong , Yang, Chen , Lin, Yixiong , Yin, Wang , Huang, Zhixian et al. Pore structure design and mass transfer optimization of resin catalysts based on lattice Boltzmann method for n-butyl levulinate synthesis . | Chemical Engineering Science , 2025 , 314 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Catalytic distillation is an effective and important technology for low-temperature dehydrogenation of perhydrobenzyltoluene (H12-BT). However, current researches have unfortunately failed to comprehensively understand the reaction and separation processes, hindering the broader application of catalytic distillation dehydrogenation technology. Therefore, in the study, a comprehensive dehydrogenation reaction kinetic model that accounts for the influence of the intermediate H6-BT was established firstly. Subsequently, the vapor-liquid equilibrium data for the binary systems H12-BT + H6-BT and H6-BT + H0-BT was estimated by utilizing the UNIFAC model, so as to obtain the azeotropes. By developing a modified catalytic distillation model, the catalytic distillation dehydrogenation process was examined. Our exploration revealed the existence of an optimal degree of dehydrogenation value, namely 0.8, within the catalytic distillation dehydrogenation process, yielding an approximate 23.8 % reduction in unit H2 production cost in comparison to the fully dehydrogenation case. Our findings contribute valuable insights that have the potential to promote the overall development of the hydrogen energy economy.
Keyword :
Catalytic distillation Catalytic distillation Degree of dehydrogenation Degree of dehydrogenation Dehydrogenation process Dehydrogenation process Perhydro-benzyltoluene Perhydro-benzyltoluene Reaction kinetic Reaction kinetic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Qinglian , Le, Keyu , Lin, Yi et al. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis [J]. | CHEMICAL ENGINEERING JOURNAL , 2024 , 482 . |
MLA | Wang, Qinglian et al. "Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis" . | CHEMICAL ENGINEERING JOURNAL 482 (2024) . |
APA | Wang, Qinglian , Le, Keyu , Lin, Yi , Yin, Wang , Lin, Yixiong , Alekseeva, Maria, V et al. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis . | CHEMICAL ENGINEERING JOURNAL , 2024 , 482 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Compressing metal foam flow field usually causes a higher pressure drop and uncontrollable pore structure while enhancing the water discharge capability of proton exchange membrane fuel cell (PEMFC). To further enhance the water discharge capability of metal foam flow field at a low cost of pressure drop, a novel metal foam flow field exhibiting hierarchical pore structure(dcoarse/dfine=2; Vcoarse/Vfine=1; dfine=0.5 mm) is first introduced. This work numerically investigates water management characteristics and output performance of novel metal foam flow field. Subsequently, 3D printing technology is employed to precisely manufacture metal foam flow fields, which are compared with several flow fields in the cathode side experimentally. Experimental results demonstrate that at 1.5 A/cm2 during 3 h, the amount of water discharge in metal foam flow field with hierarchical pore structure is close to parallel flow field, which is 1.12 times and 1.30 times that in metal foam flow field with uniform coarse pore and uniform fine pore, respectively. Moreover, compared with the previous optimized strategy, namely metal foam flow field with 75 PPI and a compression rate of 0.75, metal foam flow field with hierarchical pore structure can not only improve the maximum net power density by 9.5 % and water discharge amount by 14.1 %, but also decrease two-thirds of the pressure drop in the cathode side. This research lays the theoretical groundwork and offers technical insight for the implementation of metal foam flow fields in PEMFCs.
Keyword :
3D printing 3D printing Hierarchical pore structure Hierarchical pore structure Metal foam flow field Metal foam flow field PEMFC PEMFC Water management Water management
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Sun, Yun , Lin, Yixiong , Wan, Zhongmin et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure [J]. | CHEMICAL ENGINEERING JOURNAL , 2024 , 494 . |
MLA | Sun, Yun et al. "Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure" . | CHEMICAL ENGINEERING JOURNAL 494 (2024) . |
APA | Sun, Yun , Lin, Yixiong , Wan, Zhongmin , Wang, Qinglian , Yang, Chen , Yin, Wang et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure . | CHEMICAL ENGINEERING JOURNAL , 2024 , 494 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The balance between water discharge and mass transfer within metal foam flow field is vital for elevating the performance of proton exchange membrane fuel cell (PEMFC). To obtain an improved balance, this work designs a novel bilayer structure with two types of PPI (pore per inch) for metal foam flow field. Experimental and numerical results confirmed that arranging a metal foam featuring a smaller PPI in the layer 1 near the membrane electrode assembly (MEA) and a larger PPI in the layer 2 away from the MEA is beneficial to enhance the output performance. The excellent PPI combination for balancing mass transfer and water discharge involves utilizing a 50 PPI metal foam for the layer 1 and 110 PPI metal foam for the layer 2. Compared to conventional metal foam with 50 PPI, metal foam flow field with excellent PPI combination showcases a 11.2 % increase in water discharge and a 13.2 % boost in mass transfer, leading to a notable 23.5 % performance enhancement. Similarly, compared to conventional metal foam with 110 PPI, there is a 7.3 % decrease in mass transfer but a significant 29.5 % increases in water discharge, leading to a 15.2 % performance improvement.
Keyword :
Bilayer structure Bilayer structure Mass transfer Mass transfer Metal foam flow field Metal foam flow field PEMFC PEMFC Water discharge Water discharge
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Sun, Yun , Lin, Yixiong , Wang, Qinglian et al. Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell [J]. | APPLIED THERMAL ENGINEERING , 2024 , 257 . |
MLA | Sun, Yun et al. "Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell" . | APPLIED THERMAL ENGINEERING 257 (2024) . |
APA | Sun, Yun , Lin, Yixiong , Wang, Qinglian , Yin, Wang , Liu, Bo , Yang, Chen et al. Design and optimization of bilayer structure in metal foam flow field for proton exchange membrane fuel cell . | APPLIED THERMAL ENGINEERING , 2024 , 257 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Catalytic hydrotreatment is one of the promising routes for upgrading pyrolysis liquids (PLs) to intermediates that can be co-fed with vacuum gas oil for FCC refinery. Among all the factors, catalysts are always crucial in catalytic hydrotreatment of PLs as hydrogenation and repolymerization reactions occur in parallel. Therefore, catalysts with sufficient hydrogenation activity are generally required to enhance the hydrogenation reaction and to inhibit the repolymerization reaction of the thermally liable compounds in PLs. Among all noble metal catalysts tested, Ru/C catalysts showed a better performance than other catalysts in terms of the oil yield and deoxygenation level. However, a clear repolymerization was observed during catalytic hydrotreatment of PLs using Ru/C catalysts, especially during mild hydrotreatment, thus there is still ample room for their activity improvement. Here, a series of Ru-based catalysts supported on nitrogen-doped carbon materials (NC) and activated carbon (AC) were prepared. The catalytic performance was evaluated for hydrotreatment of PLs in a batch autoclave (250 degrees C, 8 MPa H2, 4 h for mild hydrotreatment; 340 degrees C, 6 MPa H2, 4 h for deep hydrotreatment). The Ru catalyst supported on nitrogen-doped carbon materials, obtained by the polyol reduction method with polyvinylpyrrolidone (PVP) as the protective agent (Ru/NC (PVP)), showed a better performance (in terms of product oil properties) than the other catalysts investigated in this work, due to a good distribution of the ruthenium nanoparticles. For mild hydrotreatment the H/C ratio, O/C ratio and MCRT value were 1.42, 0.37 and 9.9 wt%, respectively. For deep hydrotreatment the H/C ratio, O/C ratio and MCRT value were 1.26, 0.16 and 4.6 wt%. The comparison with results published earlier for other hydrotreatment catalysts is satisfactory but also shows room for further improvement. GC-MS and 1H NMR results showed that the contents of thermal liable components like aldehydes (16.7 %), ketones (24.3 %) and sugars (4.0 %) in PLs were quantitatively converted under mild hydrotreatment, while phenols and alkanes significantly increased from 35.9 %, 0 % to 49.1 %, 35.3 %, respectively, especially for deep hydrotreatment compared with PLs feed. The catalyst characterization revealed that Ru/NC (PVP) with the most uniform dispersion and the smallest average particle size (1.5 nm), rendered the best performance. These findings indicate that Ru/NC (PVP) catalyst is a promising candidate for the catalytic hydrotreatment of PLs.
Keyword :
Biomass Biomass Catalytic hydrotreatment Catalytic hydrotreatment Fast pyrolysis Fast pyrolysis Pyrolysis liquids Pyrolysis liquids rials rials Ru supported on nitrogen -doped carbon mate Ru supported on nitrogen -doped carbon mate
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xia, Yunhui , Xi, Nan , Yu, Xinyang et al. Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials [J]. | FUEL , 2024 , 368 . |
MLA | Xia, Yunhui et al. "Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials" . | FUEL 368 (2024) . |
APA | Xia, Yunhui , Xi, Nan , Yu, Xinyang , Luo, Maohua , Chen, Shi , Wang, Qinglian et al. Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials . | FUEL , 2024 , 368 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Designing environmentally friendly, low cost and efficient photocatalysts is vitally important for degradation of organic pollutants. Herein, a ternary composite-ZnO/ACSC@TiO2, constituted by activated coconut shell derived biochar (ACSC), TiO2 and ZnO, was successfully synthesized by two-step hydrothermal method. It demonstrated that TiO2 could be uniformly wrapped on ACSC surface during first step to form core-shell structures (ACSC@TiO2). It was beneficial not only to enhance adsorption capacity for organic pollutants and absorption ability for light, but also to form C-doped TiO2 with a relatively narrow bandgap to expand light absorption of TiO2 from UV to visible light. Subsequently, ZnO was introduced through second step to generate type-II heterojunctions with ACSC@TiO2, which further reduced bandgap value of the ternary photocatalyst to promote photogenerated carrier generation and efficiently diminished recombination of e--h+ pairs. As expected, the optimal prepared catalyst with 10 wt% of ZnO (10%ZnO/ACSC@TiO2) exhibited excellent adsorptive and photocatalytic abilities for removal of tetracycline (TC) and Rhodamine B (RhB) with different initial concentrations. Particularly, its total removal efficiency for TC and RhB was 97.6% and 99.4%, respectively under 300 W xenon lamp irradiation (25 mg/L of organic pollutants, 1.0 g/L catalyst and natural pH in 60 min). Investigations on catalytic mechanism and degradation pathways proved that 10%ZnO/ACSC@TiO2 could remove RhB and TC by deep degradation. Its enhanced synergy of adsorption and photocatalysis could efficiently accelerate mineralization rates of RhB and TC. This biomass derived biochar-based ternary composite as photocatalyst with optimized energy band structures and microstructures would have good industrial application potential.
Keyword :
Biochar Biochar Degradation of organic pollutants Degradation of organic pollutants Photocatalysis Photocatalysis Photocatalytic mechanism Photocatalytic mechanism Synergistic removal Synergistic removal
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Shipeng , Wang, Rong , Zhu, Jinhua et al. Two-step synthesis of coconut shell biochar-based ternary composite to efficiently remove organic pollutants by photocatalytic degradation [J]. | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING , 2024 , 12 (3) . |
MLA | Zhang, Shipeng et al. "Two-step synthesis of coconut shell biochar-based ternary composite to efficiently remove organic pollutants by photocatalytic degradation" . | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 12 . 3 (2024) . |
APA | Zhang, Shipeng , Wang, Rong , Zhu, Jinhua , Xie, Xiaoyan , Luo, Mei , Liu, Yude et al. Two-step synthesis of coconut shell biochar-based ternary composite to efficiently remove organic pollutants by photocatalytic degradation . | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING , 2024 , 12 (3) . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |