• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:林培杰

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 20 >
损失自适应的高感知质量生成对抗超分辨率网络
期刊论文 | 2025 , 53 (1) , 26-34 | 福州大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

为解决生成对抗网络训练过程中因损失简单加权导致的图像感知质量下降问题,提出损失自适应调整的生成对抗超分辨率网络(LA-GAN).首先,该方法设计通过计算角点分布的相关强度大小,区分规则纹理区域与不规则纹理区域.其次,基于不同区域,设计了区域自适应生成对抗学习框架.在该框架中,网络只在不规则纹理区域中进行对抗学习,提高感知质量.此外,基于下采样图像和图像块相似性的重组图像取代训练集中的高分辨率图像,实现平均绝对损失在不规则纹理区域弱约束网络,在规则纹理区域强约束网络,保证图像信号保真度.最后,通过实验证明经过优化的网络在信号保真度和感知质量方面皆有提升.

Keyword :

区域自适应 区域自适应 损失函数 损失函数 生成对抗网络 生成对抗网络 超分辨率 超分辨率

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 林旭锋 , 吴丽君 , 陈志聪 et al. 损失自适应的高感知质量生成对抗超分辨率网络 [J]. | 福州大学学报(自然科学版) , 2025 , 53 (1) : 26-34 .
MLA 林旭锋 et al. "损失自适应的高感知质量生成对抗超分辨率网络" . | 福州大学学报(自然科学版) 53 . 1 (2025) : 26-34 .
APA 林旭锋 , 吴丽君 , 陈志聪 , 林培杰 , 程树英 . 损失自适应的高感知质量生成对抗超分辨率网络 . | 福州大学学报(自然科学版) , 2025 , 53 (1) , 26-34 .
Export to NoteExpress RIS BibTex

Version :

Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network SCIE
期刊论文 | 2025 , 386 | APPLIED ENERGY
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

Recently, promising progresses have been made in photovoltaic (PV) arrays fault diagnosis (FD) due to the importance of operation and maintenance of PV power plants. However, PV arrays inevitably experience gradual degradation due to the complexity of operating conditions, resulting in domain shift of output data, which has a significant negative impact on the performance of FD. To address these problems, this study proposes a two-stage cross-domain, i.e., adaptive generative adversarial network deep learning approach for PV arrays FD under different degradation levels. In the first stage, the Normal data from the source domain (PV arrays without performance degradation) is utilized for training. Then, the Maximum Mean Discrepancy (MMD) loss is introduced to the fault generators in adversarial training to produce high-level feature representations of source domain fault data. In the second stage, identical training steps are used to guide the fault generators. Specifically, Normal data from the target domain i.e., PV arrays with performance degradation, is utilized to generate fault data features that are consistent with the target domain features. Then, the cross-domain adaptive FD model can be trained by using generated fault data features. The proposed model can not only learn the relationship from the different types of data, but also utilize target domain PV array data under healthy conditions to manually generate fake samples for cross-domain adaptive FD. Experimental results show that the Precision of the proposed model in the two tasks is 98.34% and 92.93 %, with Recall is 98.23 % and 94.13%, F1-Score is 0.9823 and 0.9274, all of which are better than those of the comparison models.

Keyword :

Adversarial networks Adversarial networks Domain adaptation Domain adaptation Fault diagnosis Fault diagnosis Generative models Generative models Photovoltaic arrays Photovoltaic arrays

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Peijie , Guo, Feng , Lin, Yaohai et al. Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network [J]. | APPLIED ENERGY , 2025 , 386 .
MLA Lin, Peijie et al. "Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network" . | APPLIED ENERGY 386 (2025) .
APA Lin, Peijie , Guo, Feng , Lin, Yaohai , Cheng, Shuying , Lu, Xiaoyang , Chen, Zhicong et al. Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network . | APPLIED ENERGY , 2025 , 386 .
Export to NoteExpress RIS BibTex

Version :

Assessment of power loss caused by soiling PV modules using a dual branch multi-modality deep learning network framework SCIE
期刊论文 | 2025 , 248 | RENEWABLE ENERGY
Abstract&Keyword Cite

Abstract :

Soiling can reduce the output power and work efficiency of photovoltaic (PV) modules, causing serious economic losses to PV systems. The cleaning schedules can be optimized to save economic expenses through the methods capable of estimating the power loss of PV modules resulting from soiling. This paper proposes a deep learning framework that combines visible light and infrared image information with dual branch cross-modality feature fusion. Initially, the MobileNetV2 is applied as the backbone of the dual branch framework to enhance the training efficiency and reduce the computational complexity. Subsequently, a cross-modality differential aware fusion module based on the channel attention mechanism (CA-CMDAF) is introduced to improve the crossmodality feature fusion capability of the model. Moreover, a multi-cascade and cross-modality fusion network and a multi-scale fusion network are integrated to further facilitate the effectiveness of feature fusion and reduce the loss of visual details during the feature extraction. Lastly, extensive experiments are carried out on the multimodality dataset. The comparison results demonstrate the superior performance of the proposed dual branch network framework with the average accuracy of 88.27 %, which is higher than that of the single-modality models trained on either visible light or infrared images alone.

Keyword :

CA-CMDAF CA-CMDAF Deep learning Deep learning Multi-modality feature fusion Multi-modality feature fusion PV power generation PV power generation Soiling loss Soiling loss

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Peijie , Chen, Hang , Cheng, Shuying et al. Assessment of power loss caused by soiling PV modules using a dual branch multi-modality deep learning network framework [J]. | RENEWABLE ENERGY , 2025 , 248 .
MLA Lin, Peijie et al. "Assessment of power loss caused by soiling PV modules using a dual branch multi-modality deep learning network framework" . | RENEWABLE ENERGY 248 (2025) .
APA Lin, Peijie , Chen, Hang , Cheng, Shuying , Lu, Xiaoyang , Lin, Yaohai , Sun, Lei . Assessment of power loss caused by soiling PV modules using a dual branch multi-modality deep learning network framework . | RENEWABLE ENERGY , 2025 , 248 .
Export to NoteExpress RIS BibTex

Version :

利用物理和数据驱动的光伏性能退化建模方法
期刊论文 | 2024 , 52 (5) , 513-519 | 福州大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

为提高户外光伏电站现场退化评估的准确性和可靠性,提出一种物理和数据驱动的光伏组件性能退化模型.研究户外光伏组件受静态温度、循环温度、相对湿度和紫外线影响的特性,并综合动态应力函数,利用累积损失模型对多应力下光伏电站性能退化进行建模.此外,退化模型的未知参数通过遗传算法来提取.使用美国国家太阳辐射数据库的长期数据对该模型进行训练和测试.将性能退化实际值和模型计算值进行对比,结果表明,本研究所提出模型的相对误差更低,验证了该方法的可行性.

Keyword :

优化算法 优化算法 光伏电站 光伏电站 光伏退化 光伏退化 数据驱动 数据驱动

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 王宇钖 , 陈志聪 , 吴丽君 et al. 利用物理和数据驱动的光伏性能退化建模方法 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (5) : 513-519 .
MLA 王宇钖 et al. "利用物理和数据驱动的光伏性能退化建模方法" . | 福州大学学报(自然科学版) 52 . 5 (2024) : 513-519 .
APA 王宇钖 , 陈志聪 , 吴丽君 , 俞金玲 , 程树英 , 林培杰 . 利用物理和数据驱动的光伏性能退化建模方法 . | 福州大学学报(自然科学版) , 2024 , 52 (5) , 513-519 .
Export to NoteExpress RIS BibTex

Version :

利用GAT的光伏阵列故障诊断方法
期刊论文 | 2024 , 52 (5) , 505-512 | 福州大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

提出一种基于图注意力网络(graph attention network,GAT)的光伏阵列故障诊断模型,以解决光伏阵列中因故障导致的发电效率降低、正常运行受阻等问题.通过离散小波变换和滑窗算法截取故障后稳态时序信号并将其分割成子区间,将子区间视为图节点.使用K邻近构图法将故障后稳态电压、电流数据转变成图结构,构建节点级GAT模型.通过多头注意力机制自动提取电压、电流图结构的故障特征.通过实验室光伏阵列获取实验数据集,对所提模型进行测试.结果表明,本模型能准确诊断光伏阵列的不同故障状态,平均准确率达到99.790%,效果优于所对比的其他网络模型.

Keyword :

光伏阵列 光伏阵列 图神经网络 图神经网络 图结构 图结构 故障诊断 故障诊断 注意力机制 注意力机制

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 董浪灿 , 卢箫扬 , 林培杰 et al. 利用GAT的光伏阵列故障诊断方法 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (5) : 505-512 .
MLA 董浪灿 et al. "利用GAT的光伏阵列故障诊断方法" . | 福州大学学报(自然科学版) 52 . 5 (2024) : 505-512 .
APA 董浪灿 , 卢箫扬 , 林培杰 , 程树英 , 陈志聪 , 吴丽君 . 利用GAT的光伏阵列故障诊断方法 . | 福州大学学报(自然科学版) , 2024 , 52 (5) , 505-512 .
Export to NoteExpress RIS BibTex

Version :

基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型
期刊论文 | 2024 , 52 (6) , 667-673 | 福州大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

提出一种基于高效通道注意(ECA)网络和双向长短期记忆神经网络(BILSTM)的自适应智慧路灯边缘计算模型.首先,在BILSTM的基础上,融合布谷鸟算法、通道注意力机制,构建CS-ECA-BILSTM能见度预测模型,实现道路能见度预测;其次,为普通路灯控制因子单一的问题引入照度和色温因子,提高控制效率并降低路灯能耗;最后,在边缘端引入云原生理念,使用KubeEdge框架与容器技术部署路灯控制模型到边缘端,从而实现多路灯控制.实验结果表明,所提出CS-ECA-BILSTM模型的性能优于其他对比模型,可有效提高路灯能源利用率,且能实现在边缘端的运行.

Keyword :

双向长短期记忆神经网络 双向长短期记忆神经网络 容器技术 容器技术 智慧路灯 智慧路灯 注意力机制 注意力机制 边缘计算 边缘计算

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 郭泽鑫 , 林培杰 , 程树英 et al. 基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (6) : 667-673 .
MLA 郭泽鑫 et al. "基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型" . | 福州大学学报(自然科学版) 52 . 6 (2024) : 667-673 .
APA 郭泽鑫 , 林培杰 , 程树英 , 陈志聪 , 吴丽君 . 基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型 . | 福州大学学报(自然科学版) , 2024 , 52 (6) , 667-673 .
Export to NoteExpress RIS BibTex

Version :

采用PCA-CSA-Informer模型的光伏短期发电量预测
期刊论文 | 2024 , 52 (6) , 681-690 | 福州大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

为提高光伏发电的预测精确度,提出一种结合主成分分析(PCA)、双通道注意力(CSA)机制和Informer的短期光伏发电量预测新模型.采用Spearman相关分析方法对光伏发电的多元时间序列进行分析,并结合PCA提取时序特征,构建输入数据集.同时,引入CSA机制模块,提取光伏发电历史数据的时间维度和空间维度的特征,然后输入Informer模型进行预测.采用以 30 min为分辨率的光伏电站公开数据集进行实验验证和对比分析.实验结果表明,本研究所提出的预测模型在 4 步预测中的平均绝对误差为 0.061 5,均方误差为0.0205,均方根误差为 0.1435,R2 为 0.9872,均优于其他比较模型,有望为光伏短期发电量预测提供更好的预测精确度.

Keyword :

Informer模型 Informer模型 主成分分析 主成分分析 光伏发电预测 光伏发电预测 双通道注意力机制 双通道注意力机制 短期发电量 短期发电量

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 蔡伟雄 , 陈志聪 , 吴丽君 et al. 采用PCA-CSA-Informer模型的光伏短期发电量预测 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (6) : 681-690 .
MLA 蔡伟雄 et al. "采用PCA-CSA-Informer模型的光伏短期发电量预测" . | 福州大学学报(自然科学版) 52 . 6 (2024) : 681-690 .
APA 蔡伟雄 , 陈志聪 , 吴丽君 , 程树英 , 林培杰 . 采用PCA-CSA-Informer模型的光伏短期发电量预测 . | 福州大学学报(自然科学版) , 2024 , 52 (6) , 681-690 .
Export to NoteExpress RIS BibTex

Version :

Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model SCIE
期刊论文 | 2024 , 651 | JOURNAL OF HYDROLOGY
Abstract&Keyword Cite

Abstract :

Short-term water demand forecasting is essential for ensuring the sustainable use of water resources. The accuracy of water demand forecasting directly impacts the rationality of water resources management and the effectiveness of scheduling. Therefore, it is vital to accurately forecast water demand across various timescales. Based on this motivation, we propose an improved patch time series Transformer (PatchTST) model to forecast the multi-timescale short-term water demand. By introducing relative positional encoding (RPE), the model effectively learns the relationships between tokens. The model combines the global token information capture ability of the self-attention mechanism with the local token information capture ability of the convolutional network to enhance feature extraction abilities. Additionally, the model integrates the advantages of patch-wise and series-wise representation, enabling it to simultaneously capture both local and global dependencies in time series. We utilize historical data collected from district metering area to experimentally validate the effectiveness of the proposed model. Compared with one-dimensional convolutional neural network (1D-CNN), long shortterm memory (LSTM), Transformer, DLinear, and PatchTST models, our model demonstrates superior performance across all five forecasting scales. Finally, the effectiveness of the proposed design is further validated through ablation experiments.

Keyword :

Deep learning Deep learning Multi-timescale Multi-timescale PatchTST PatchTST Water demand forecasting Water demand forecasting

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Peijie , Zhang, Xiangxin , Gong, Longcong et al. Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model [J]. | JOURNAL OF HYDROLOGY , 2024 , 651 .
MLA Lin, Peijie et al. "Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model" . | JOURNAL OF HYDROLOGY 651 (2024) .
APA Lin, Peijie , Zhang, Xiangxin , Gong, Longcong , Lin, Jingwei , Zhang, Jie , Cheng, Shuying . Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model . | JOURNAL OF HYDROLOGY , 2024 , 651 .
Export to NoteExpress RIS BibTex

Version :

利用轻量化深度学习模型和加速度信号的枪击识别方法 PKU
期刊论文 | 2023 , 51 (4) , 475-481 | 福州大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

针对不同类型的枪击加速度信号,采用深度学习的方法,提出一种新的兼顾精度和轻量化的时间序列(ENT)模型进行研究.该架构核心由注意力倒置残差模块与倒置残差模块组成,能够自动提取枪击加速度信号特征,对不同输入时间尺度更具鲁棒性.在识别精确率方面达到97.42%,超越传统枪击识别算法,在公开枪击数据集上与SVM、决策树、随机森林3 种传统机器学习模型,以及FCN、ResNet、Inceptiontime、Xceptiontime等4 种时间序列深度学习模型对比.实验结果表明:ENT模型更加高效,识别精确率更高.

Keyword :

加速度 加速度 时间序列模型 时间序列模型 枪击识别 枪击识别 轻量化 轻量化 高精度 高精度

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 郑浩鑫 , 陈志聪 , 吴丽君 et al. 利用轻量化深度学习模型和加速度信号的枪击识别方法 [J]. | 福州大学学报(自然科学版) , 2023 , 51 (4) : 475-481 .
MLA 郑浩鑫 et al. "利用轻量化深度学习模型和加速度信号的枪击识别方法" . | 福州大学学报(自然科学版) 51 . 4 (2023) : 475-481 .
APA 郑浩鑫 , 陈志聪 , 吴丽君 , 林培杰 , 程树英 . 利用轻量化深度学习模型和加速度信号的枪击识别方法 . | 福州大学学报(自然科学版) , 2023 , 51 (4) , 475-481 .
Export to NoteExpress RIS BibTex

Version :

结合改进的DCGAN和Attention-LSTM的光伏功率预测 PKU
期刊论文 | 2023 , 51 (4) , 498-504 | 福州大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

针对新建光伏发电站在光伏功率预测过程中因缺少训练数据导致预测精度较低和光伏发电功率的不稳定等问题,提出一种结合改进的深度卷积生成对抗网络(DCGAN)、注意力机制(Attention)和LSTM网络组合的光伏功率预测方法.首先,将DCGAN中生成器的特征提取网络由二维卷积改为一维卷积,对光伏数据进行扩充.其次,将Attention模块加入LSTM模块中,生成新的输入特征.最后,对新生成的LSTM模型进行功率预测,并采用澳大利亚沙漠知识太阳能中心(DKASC)Alice Springs电站的数据进行验证.实验结果表明,结合深层卷积生成的对抗网络与Attention-LSTM混合预测方法能有效提升预测精度.

Keyword :

光伏功率预测 光伏功率预测 注意力机制 注意力机制 深度卷积生成对抗网络 深度卷积生成对抗网络 长短期记忆网络 长短期记忆网络

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 徐柔 , 章杰 , 赖松林 et al. 结合改进的DCGAN和Attention-LSTM的光伏功率预测 [J]. | 福州大学学报(自然科学版) , 2023 , 51 (4) : 498-504 .
MLA 徐柔 et al. "结合改进的DCGAN和Attention-LSTM的光伏功率预测" . | 福州大学学报(自然科学版) 51 . 4 (2023) : 498-504 .
APA 徐柔 , 章杰 , 赖松林 , 林培杰 , 卢箫扬 , 余平平 . 结合改进的DCGAN和Attention-LSTM的光伏功率预测 . | 福州大学学报(自然科学版) , 2023 , 51 (4) , 498-504 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 20 >

Export

Results:

Selected

to

Format:
Online/Total:563/13572918
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1