Query:
学者姓名:王清莲
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
Dimethyl carbonate (DMC) is an important chemical raw material extensively used in organic synthesis, lithium-ion battery electrolytes, etc. The primary method for industrial synthesis of DMC involves transesterification between ethylene carbonate and MeOH but faces issues with difficult catalyst separation and low catalytic activity. Based on the synergistic catalytic activity of cation and anion, this study develops poly(ionic liquid)s of [NXPIL][PHO] and [N3PIL][Y] with varying alkaline sites and alkalinity levels. This is accomplished by constructing functional polymer monomers containing free radical polymerization sites and nitrogen-containing alkaline groups, and by polymerizing them with suitable cross-linking monomers in a specific ratio before exchanging the resulting polymers with different anions. Results show that doping with nitrogen-containing alkaline groups leads to enhanced basic functional sites while appropriate anions provide intensified alkalinity levels. The [N3PIL][PHO] obtained exhibits superior catalytic activity in transesterification synthesis of DMC, with a yield of 91.43% and selectivity of 99.96% at a reaction time of 2 h. The study also investigates the impact of poly(ionic liquid) cationic structure and anion types, as well as their interactions, on catalytic performance. The findings reveal that the catalytic activity of poly(ionic liquid) is restricted by the interactions between cation and anion. Based on these findings, a possible reaction mechanism was proposed, providing theoretical support for the high-efficiency production of DMC.
Keyword :
anion and cation regulation anion and cation regulation dimethyl carbonate production dimethyl carbonate production mechanism mechanism poly(ionic liquid)s poly(ionic liquid)s transesterification reaction transesterification reaction
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Qi, Zhaoyang , Zhang, Fuying , Su, Huiyun et al. Functional poly(ionic liquid) with unique zwitterionic structure as efficient catalyst for the conversion of ethylene carbonate to dimethyl carbonate [J]. | SMART MOLECULES , 2025 . |
MLA | Qi, Zhaoyang et al. "Functional poly(ionic liquid) with unique zwitterionic structure as efficient catalyst for the conversion of ethylene carbonate to dimethyl carbonate" . | SMART MOLECULES (2025) . |
APA | Qi, Zhaoyang , Zhang, Fuying , Su, Huiyun , Ye, Changshen , Wang, Qinglian , Qiu, Ting et al. Functional poly(ionic liquid) with unique zwitterionic structure as efficient catalyst for the conversion of ethylene carbonate to dimethyl carbonate . | SMART MOLECULES , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The C2-O cleavage of furanic ring is the crucial step in selective hydrogenation of furfuryl alcohol (FOL) to 1,5pentanediol (1,5-PDO). In this study, reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy (Ov) and different Co/Ni molar ratios were prepared through intercalation modification of Co-based hydrotalcite by ammonium citrate (CA), followed by calcination and reduction. The catalytic performance exhibited that a quantitative conversion of FOL with 44.4 % yield and 8.2 mmol1,5-PDO & sdot;gcat -1 & sdot;h- 1 productivity of 1,5-PDO were achieved by using Co2Ni1Al1Ox-CA(0.1) (molar ratio of Co:Ni = 2:1; molar concentration ratio of CA:Na2CO3 = 0.1) under optimal conditions. The stability test showed that Co2Ni1Al1Ox-CA(0.1) consistently rendered above 40 % yield of 1,5-PDO in seven consecutive cycles. Catalyst characterizations were carried out using a series of techniques including XPS, EPR, O2-TPD, etc. The results demonstrate that the addition of CA effectively altered the surface molar ratios of Co2+/(Co2++Co3+), thereby regulating the Ov content of the obtained catalysts. The CoO-Ov sites in the catalyst might enhance the adsorption of FOL by eta 1-(O)-alcoholic model, which weakened C2O bond on the furanic ring of FOL. Besides, the H2-TPD anslysis confirmed that the enhanced spillover of hydrogen from Ni0 onto CoO-Ov site, thereby promoting the cleavage of the C2-O bond in FOL and subsequent hydrogenation of enol intermediates. In addition, the DFT calculations imply that FOL adsorption on CoO-Ov site by eta 1-(O)-alcoholic model was significantly favorable than that on pristine CoO sites (-1.68 eV versus -1.55 eV). Consequently, this study has substantiated the crucial role played by CoO-Ov in the reaction pathway leading to 1,5-PDO formation via FOL, proposing a viable scheme for designing catalysts based on transition metals and elucidating their underlying reaction mechanism.
Keyword :
1,5-pentanediol 1,5-pentanediol Furfuryl alcohol Furfuryl alcohol Oxygen vacancy Oxygen vacancy Reduced mixed metal oxide catalysts Reduced mixed metal oxide catalysts Selective hydrogenation Selective hydrogenation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xi, Nan , Li, Qiwang , Chen, Yi et al. Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 . |
MLA | Xi, Nan et al. "Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol" . | CHEMICAL ENGINEERING JOURNAL 512 (2025) . |
APA | Xi, Nan , Li, Qiwang , Chen, Yi , Bao, Ruixi , Wang, Qinglian , Lin, Yixiong et al. Reduced mixed Ni-Co-Al metal oxide catalysts with rich oxygen vacancy derived from layered double hydrotalcite for selective hydrogenation of furfuryl alcohol to 1,5-Pentanediol . | CHEMICAL ENGINEERING JOURNAL , 2025 , 512 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
This study proposes integrating the catalytic distillation dehydrogenation system with a solid oxide fuel cell (SOFC) system to recover and reuse the waste heat from the SOFC exhaust gases. The research focuses on a 25 kW SOFC system and categorizes potential system layouts into three types based on the final use of the exhaust gas. Through a comprehensive analysis from energy, environmental, economic and exergy (4E) perspectives, the results show that while the SOFC stack dominates the energy and economic factors, leading to consistent performance across similar system layouts, the thermodynamic irreversibility during system operation is influenced by exergy destruction and exergy loss. Using a multi-criteria evaluation approach, the optimal integration scheme, where the final exhaust gas is utilized for preheating air, was identified when all four indicators were equally weighted. The results indicate that the optimal system achieves a thermal efficiency of 46.97% and improves system energy efficiency by 52.59%. Furthermore, compared to the initial non-integrated system, the integrated system reduces environmental carbon emissions by 58.56%, increases economic efficiency by 36.64% and reduces exergy losses by 94.11%, highlighting the advantages of system integration. More importantly, the integrated system has a competitive levelized cost of electricity (LCOE) of 0.134 $/kWh, demonstrating its potential for a wide range of applications, from small-scale to large industrial processes.
Keyword :
4E analysis 4E analysis Catalytic distillation Catalytic distillation Dehydrogenation system Dehydrogenation system Integrated system Integrated system Perhydro-benzyltoluene Perhydro-benzyltoluene SOFC SOFC
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Le, Keyu , Ren, Haoran , Huang, Zhixian et al. 4E analysis of an integrated system of catalytic distillation dehydrogenation system of perhydro benzyltoluene and solid oxide fuel cell [J]. | INTERNATIONAL JOURNAL OF HYDROGEN ENERGY , 2025 , 111 : 342-360 . |
MLA | Le, Keyu et al. "4E analysis of an integrated system of catalytic distillation dehydrogenation system of perhydro benzyltoluene and solid oxide fuel cell" . | INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 111 (2025) : 342-360 . |
APA | Le, Keyu , Ren, Haoran , Huang, Zhixian , Yin, Wang , Lin, Yixiong , Duan, Pengfei et al. 4E analysis of an integrated system of catalytic distillation dehydrogenation system of perhydro benzyltoluene and solid oxide fuel cell . | INTERNATIONAL JOURNAL OF HYDROGEN ENERGY , 2025 , 111 , 342-360 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Dry reforming of methane (DRM), which is a viable approach for carbon capture and utilization, is notably inclined towards carbon deposition due to the formation of cold spots, causing catalyst rapid deactivation, thereby limiting its industrial application. In order to prevent catalyst coking, it is imperative to improve the heat and mass transfer processes in DRM reactors. A foam reactor with hierarchical pore structure was proposed in this work, which is composed of fine and coarse pores and avoids contact thermal resistance due to the contact of foam structures with different pore sizes. Based on lattice Boltzmann model, this work investigated the impact of hierarchical pore structure on the heat and mass transfer, as well as DRM reaction in Ni/Al2O3 based foam reactors. The findings suggest an optimal overall heat transfer coefficient with the variation of dcoarse/dfine under equal pumping power. Furthermore, it reveals a synergistic mechanism between the heat and mass transfer processes, identifying an optimal hierarchical pore structure which, compared to uniform fine and coarse pore structures, facilitates an enhancement in reaction performance by 14.1 % and 13.0 %, respectively. This work provides a theoretical foundation and technical direction for the design of foam reactors.
Keyword :
Dry reforming of methane Dry reforming of methane Foam reactor Foam reactor Heat and mass transfer Heat and mass transfer Hierarchical pore structure Hierarchical pore structure Lattice Boltzmann method Lattice Boltzmann method
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Yixiong , Yu, Minkai , Wang, Qinglian et al. Unraveling the structure-performance relationship of foam reactor with hierarchical pore structure for dry reforming of methane reaction [J]. | FUEL , 2025 , 389 . |
MLA | Lin, Yixiong et al. "Unraveling the structure-performance relationship of foam reactor with hierarchical pore structure for dry reforming of methane reaction" . | FUEL 389 (2025) . |
APA | Lin, Yixiong , Yu, Minkai , Wang, Qinglian , Zhang, Wei , Yin, Wang , Yang, Chen et al. Unraveling the structure-performance relationship of foam reactor with hierarchical pore structure for dry reforming of methane reaction . | FUEL , 2025 , 389 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
To cope with small production quantities of specialized chemicals, modular production plants have gained increasing attention in recent years. Zero-gravity distillation (ZGD) is a small-scale distillation process, which offers high separation efficiency, proving advantageous for modularizing processes. In this research, the study of ZGD process intensification is conducted. A ZGD experimental setup was established and the separation of ethanol/water mixtures was chosen as an example to investigate the effects of metal foam material, liquid filling rate, and PPI of metal foam on the separation performance, which was quantified by height equivalent to a theoretical plate (HETP). The results reveal that under constant feed volume (50 ml) and the mole fraction of ethanol (0.2), employing 40 PPI copper foam and 100 % liquid filling rate results in HETP of 5.56 cm for ZGD unit, demonstrating superior separation performance. Subsequently, an optimization strategy adopting sandwich internal structure with ordered hierarchical meta foam is proposed to further intensify the separation process. In contrast to the case of employing 40 PPI copper foam and liquid filling rate of 100 %, the optimization strategy can further reduce HETP by approximately 18.17 %, being 4.55 cm. This finding provides a theoretical foundation and technical guidance for developing zero-gravity distillation technology.
Keyword :
Height equivalent to a theoretical plate (HETP) Height equivalent to a theoretical plate (HETP) Ordered hierarchical metal foam Ordered hierarchical metal foam Process intensification Process intensification Sandwich internal structure Sandwich internal structure Separation performance Separation performance Zero-gravity distillation (ZGD) Zero-gravity distillation (ZGD)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Yixiong , Huang, Zhibin , Jiang, Pengze et al. Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 . |
MLA | Lin, Yixiong et al. "Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam" . | SEPARATION AND PURIFICATION TECHNOLOGY 360 (2025) . |
APA | Lin, Yixiong , Huang, Zhibin , Jiang, Pengze , Wang, Qinglian , Yin, Wang , Yang, Chen et al. Separation process intensification for zero-gravity distillation through sandwich internal structure with ordered hierarchical metal foam . | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Catalytic hydrotreatment is a promising technique to upgrade pyrolysis liquids (PLs) with undesired properties into intermediate that can be co-processed with vacuum gas oil in FCC refinery. Highly active catalysts are key in such a process. In this study, a ruthenium-based catalyst possessing both single-atomic and nanocluster sites supported on hierarchically porous nitrogen-doped carbon (Ru1+NPs/HPNC) was prepared by a two-step alcohol reduction method. Catalytic performance was evaluated for both model compound vanillin (VL) and PLs in a batch autoclave. The model compound study showed that Ru1+NPs/HPNC exhibited excellent intrinsic activity in VL hydrogenation, with a TOF of 26.9 s−1, which is approximately 3 times higher than that of Ru1/HPNC (8.4 s−1) and RuNPs/HPNC (8.8 s−1), and 6 times that of Ru/AC (4.2 s−1). Catalytic hydrotreatment of PLs indicated that Ru1+NPs/HPNC possessed the best activity regarding to the highest H/C ratio (mild hydrotreatment: 1.33; deep hydrotreatment: 1.29) and the lowest TG residue (mild hydrotreatment: 14.4 wt%; deep hydrotreatment: 6.5 wt%) of the product oils. To obtain understanding of the synergistic effect between single-atoms and nanoclusters, the adsorption of VL and H2 on the catalyst was examined by ATR-FTIR and DFT calculations. The results revealed that VL is preferentially adsorbed and activated on the single-atomic sites, while the H2 is preferentially dissociated on the nanocluster sites. Based on these findings, a plausible mechanism is proposed. This study offers new ideas for developing better-performing catalysts for catalytic hydrotreatment of PLs. © 2025 Elsevier Ltd
Keyword :
Nanocatalysts Nanocatalysts Nanoclusters Nanoclusters Pyrolysis Pyrolysis
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhu, Xingchao , Gan, Zhiwei , Wang, Yueqi et al. The synergistic effect between Ru single-atomic sites and nanoclusters during catalytic hydrotreatment of fast pyrolysis liquids from lignocellulosic biomass [J]. | Chemical Engineering Science , 2025 , 315 . |
MLA | Zhu, Xingchao et al. "The synergistic effect between Ru single-atomic sites and nanoclusters during catalytic hydrotreatment of fast pyrolysis liquids from lignocellulosic biomass" . | Chemical Engineering Science 315 (2025) . |
APA | Zhu, Xingchao , Gan, Zhiwei , Wang, Yueqi , Xi, Nan , Wang, Qinglian , Lin, Yixiong et al. The synergistic effect between Ru single-atomic sites and nanoclusters during catalytic hydrotreatment of fast pyrolysis liquids from lignocellulosic biomass . | Chemical Engineering Science , 2025 , 315 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
This work underscores the critical importance of enhancing the mass transfer performance of catalyst particles for the production of n-butyl levulinate (BL) from levulinic acid (LA). The lattice Boltzmann method was proposed to investigate the relationship between pore structure and mass transfer, thereby guiding the rational design of high-performance catalyst. Furthermore, a novel catalyst regulation strategy was introduced, utilizing UiO-66 as a template to fabricate a series of catalysts, UiOxD40H160-SO3H. This strategy allows for the regulation of the pore structure of resin catalysts over a broader range and successfully enhanced the mass transfer performance. Among the synthesized catalysts, the LA conversion efficiency with UiO0.4D40H160-SO3H under mild reaction conditions increased by an average of 18.1% compared to the previously reported best-performing Dowex 50Wx2 resin catalyst. These findings provide valuable new insights into the production of BL while also highlighting the potential of the proposed catalyst design strategy for industrial applications. © 2025 Elsevier Ltd
Keyword :
Crystal lattices Crystal lattices Diffusion in liquids Diffusion in liquids Diffusion in solids Diffusion in solids Osmosis Osmosis Thermal diffusion Thermal diffusion
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xiong, Peiyun , Shi, Yong , Yang, Chen et al. Pore structure design and mass transfer optimization of resin catalysts based on lattice Boltzmann method for n-butyl levulinate synthesis [J]. | Chemical Engineering Science , 2025 , 314 . |
MLA | Xiong, Peiyun et al. "Pore structure design and mass transfer optimization of resin catalysts based on lattice Boltzmann method for n-butyl levulinate synthesis" . | Chemical Engineering Science 314 (2025) . |
APA | Xiong, Peiyun , Shi, Yong , Yang, Chen , Lin, Yixiong , Yin, Wang , Huang, Zhixian et al. Pore structure design and mass transfer optimization of resin catalysts based on lattice Boltzmann method for n-butyl levulinate synthesis . | Chemical Engineering Science , 2025 , 314 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Catalytic hydrotreatment is one of the promising routes for upgrading pyrolysis liquids (PLs) to intermediates that can be co-fed with vacuum gas oil for FCC refinery. Among all the factors, catalysts are always crucial in catalytic hydrotreatment of PLs as hydrogenation and repolymerization reactions occur in parallel. Therefore, catalysts with sufficient hydrogenation activity are generally required to enhance the hydrogenation reaction and to inhibit the repolymerization reaction of the thermally liable compounds in PLs. Among all noble metal catalysts tested, Ru/C catalysts showed a better performance than other catalysts in terms of the oil yield and deoxygenation level. However, a clear repolymerization was observed during catalytic hydrotreatment of PLs using Ru/C catalysts, especially during mild hydrotreatment, thus there is still ample room for their activity improvement. Here, a series of Ru-based catalysts supported on nitrogen-doped carbon materials (NC) and activated carbon (AC) were prepared. The catalytic performance was evaluated for hydrotreatment of PLs in a batch autoclave (250 degrees C, 8 MPa H2, 4 h for mild hydrotreatment; 340 degrees C, 6 MPa H2, 4 h for deep hydrotreatment). The Ru catalyst supported on nitrogen-doped carbon materials, obtained by the polyol reduction method with polyvinylpyrrolidone (PVP) as the protective agent (Ru/NC (PVP)), showed a better performance (in terms of product oil properties) than the other catalysts investigated in this work, due to a good distribution of the ruthenium nanoparticles. For mild hydrotreatment the H/C ratio, O/C ratio and MCRT value were 1.42, 0.37 and 9.9 wt%, respectively. For deep hydrotreatment the H/C ratio, O/C ratio and MCRT value were 1.26, 0.16 and 4.6 wt%. The comparison with results published earlier for other hydrotreatment catalysts is satisfactory but also shows room for further improvement. GC-MS and 1H NMR results showed that the contents of thermal liable components like aldehydes (16.7 %), ketones (24.3 %) and sugars (4.0 %) in PLs were quantitatively converted under mild hydrotreatment, while phenols and alkanes significantly increased from 35.9 %, 0 % to 49.1 %, 35.3 %, respectively, especially for deep hydrotreatment compared with PLs feed. The catalyst characterization revealed that Ru/NC (PVP) with the most uniform dispersion and the smallest average particle size (1.5 nm), rendered the best performance. These findings indicate that Ru/NC (PVP) catalyst is a promising candidate for the catalytic hydrotreatment of PLs.
Keyword :
Biomass Biomass Catalytic hydrotreatment Catalytic hydrotreatment Fast pyrolysis Fast pyrolysis Pyrolysis liquids Pyrolysis liquids rials rials Ru supported on nitrogen -doped carbon mate Ru supported on nitrogen -doped carbon mate
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xia, Yunhui , Xi, Nan , Yu, Xinyang et al. Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials [J]. | FUEL , 2024 , 368 . |
MLA | Xia, Yunhui et al. "Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials" . | FUEL 368 (2024) . |
APA | Xia, Yunhui , Xi, Nan , Yu, Xinyang , Luo, Maohua , Chen, Shi , Wang, Qinglian et al. Catalytic hydrotreatment of fast pyrolysis liquids from Pine wood using Ru-based catalysts supported on nitrogen-doped carbon materials . | FUEL , 2024 , 368 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Catalytic distillation is an effective and important technology for low-temperature dehydrogenation of perhydrobenzyltoluene (H12-BT). However, current researches have unfortunately failed to comprehensively understand the reaction and separation processes, hindering the broader application of catalytic distillation dehydrogenation technology. Therefore, in the study, a comprehensive dehydrogenation reaction kinetic model that accounts for the influence of the intermediate H6-BT was established firstly. Subsequently, the vapor-liquid equilibrium data for the binary systems H12-BT + H6-BT and H6-BT + H0-BT was estimated by utilizing the UNIFAC model, so as to obtain the azeotropes. By developing a modified catalytic distillation model, the catalytic distillation dehydrogenation process was examined. Our exploration revealed the existence of an optimal degree of dehydrogenation value, namely 0.8, within the catalytic distillation dehydrogenation process, yielding an approximate 23.8 % reduction in unit H2 production cost in comparison to the fully dehydrogenation case. Our findings contribute valuable insights that have the potential to promote the overall development of the hydrogen energy economy.
Keyword :
Catalytic distillation Catalytic distillation Degree of dehydrogenation Degree of dehydrogenation Dehydrogenation process Dehydrogenation process Perhydro-benzyltoluene Perhydro-benzyltoluene Reaction kinetic Reaction kinetic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Qinglian , Le, Keyu , Lin, Yi et al. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis [J]. | CHEMICAL ENGINEERING JOURNAL , 2024 , 482 . |
MLA | Wang, Qinglian et al. "Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis" . | CHEMICAL ENGINEERING JOURNAL 482 (2024) . |
APA | Wang, Qinglian , Le, Keyu , Lin, Yi , Yin, Wang , Lin, Yixiong , Alekseeva, Maria, V et al. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis . | CHEMICAL ENGINEERING JOURNAL , 2024 , 482 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Compressing metal foam flow field usually causes a higher pressure drop and uncontrollable pore structure while enhancing the water discharge capability of proton exchange membrane fuel cell (PEMFC). To further enhance the water discharge capability of metal foam flow field at a low cost of pressure drop, a novel metal foam flow field exhibiting hierarchical pore structure(dcoarse/dfine=2; Vcoarse/Vfine=1; dfine=0.5 mm) is first introduced. This work numerically investigates water management characteristics and output performance of novel metal foam flow field. Subsequently, 3D printing technology is employed to precisely manufacture metal foam flow fields, which are compared with several flow fields in the cathode side experimentally. Experimental results demonstrate that at 1.5 A/cm2 during 3 h, the amount of water discharge in metal foam flow field with hierarchical pore structure is close to parallel flow field, which is 1.12 times and 1.30 times that in metal foam flow field with uniform coarse pore and uniform fine pore, respectively. Moreover, compared with the previous optimized strategy, namely metal foam flow field with 75 PPI and a compression rate of 0.75, metal foam flow field with hierarchical pore structure can not only improve the maximum net power density by 9.5 % and water discharge amount by 14.1 %, but also decrease two-thirds of the pressure drop in the cathode side. This research lays the theoretical groundwork and offers technical insight for the implementation of metal foam flow fields in PEMFCs.
Keyword :
3D printing 3D printing Hierarchical pore structure Hierarchical pore structure Metal foam flow field Metal foam flow field PEMFC PEMFC Water management Water management
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Sun, Yun , Lin, Yixiong , Wan, Zhongmin et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure [J]. | CHEMICAL ENGINEERING JOURNAL , 2024 , 494 . |
MLA | Sun, Yun et al. "Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure" . | CHEMICAL ENGINEERING JOURNAL 494 (2024) . |
APA | Sun, Yun , Lin, Yixiong , Wan, Zhongmin , Wang, Qinglian , Yang, Chen , Yin, Wang et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure . | CHEMICAL ENGINEERING JOURNAL , 2024 , 494 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |