• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship
Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 1 >
State updating in Xin'anjiang model by Asynchronous Ensemble Kalman filtering with enhanced error models Scopus
期刊论文 | 2024 , 640 | Journal of Hydrology
Abstract&Keyword Cite

Abstract :

For flood simulation in humid catchments, utilizing discharge observations to update the states of hydrological models may enhance performance. Asynchronous Ensemble Kalman Filter (AEnKF), an asynchronous variant of the Ensemble Kalman Filter (EnKF), holds substantial application potential in hydrological assimilation due to its ability to utilize more observations with almost no additional computational time. This study employs AEnKF to update the state variables of the Xin'anjiang model, necessitating the use of error models to perturb both model states and observations to generate ensemble spread. The Bias-corrected Gaussian Error Model (BGEM) is used to mitigate the systematic bias brought by perturbating soil moisture, and the Maximum a Posteriori Estimation Method (MAP) is employed for the estimation of hyperparameters of error models. Through synthetic and real-world data testing, it has been validated that the rectification of soil moisture perturbations using the BGEM significantly reduces the systematic bias induced by Gaussian perturbations. Moreover, the assimilation scheme introduced in this study, based on AEnKF with enhanced error models, outperforms the EnKF with those models. It substantially reduces the accumulation of past errors in the initial conditions at the start of the forecast, thereby aiding in elevating the accuracy of flood forecasting. © 2024 Elsevier B.V.

Keyword :

Asynchronous Ensemble Kalman filtering Asynchronous Ensemble Kalman filtering Data assimilation Data assimilation Error model Error model Flood forecasting Flood forecasting Xin'anjiang model Xin'anjiang model

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Gong, J. , Xu, J. , Yao, C. et al. State updating in Xin'anjiang model by Asynchronous Ensemble Kalman filtering with enhanced error models [J]. | Journal of Hydrology , 2024 , 640 .
MLA Gong, J. et al. "State updating in Xin'anjiang model by Asynchronous Ensemble Kalman filtering with enhanced error models" . | Journal of Hydrology 640 (2024) .
APA Gong, J. , Xu, J. , Yao, C. , Li, Z. , Weerts, A.H. , Wang, X. et al. State updating in Xin'anjiang model by Asynchronous Ensemble Kalman filtering with enhanced error models . | Journal of Hydrology , 2024 , 640 .
Export to NoteExpress RIS BibTex

Version :

基于水文模型的缺资料流域设计洪水计算 CSCD PKU
期刊论文 | 2023 , 51 (6) , 1-8,17 | 河海大学学报(自然科学版)
Abstract&Keyword Cite

Abstract :

从流域降雨径流物理机制出发,选取不同水文气象分区的4个缺资料小流域,基于暴雨衰减公式进行设计降雨过程计算,结合流域下垫面特征推求模型参数,构建流域水文模型实现设计洪水计算,并将水文模型法计算结果与推理公式法进行比较.结果表明:水文模型法得到的设计洪水与推理公式法相似(洪峰、洪量相对误差均不超过30%);水文模型法考虑了土壤下渗能力随着降雨过程的变化情况和流域内各点汇流过程的不确定性;水文模型参数的时空分布不均匀性更加符合流域实际的产汇流规律,提升了复杂情况下设计洪水计算的可靠性.

Keyword :

下垫面条件 下垫面条件 推理公式法 推理公式法 气象分区 气象分区 水文模型 水文模型 缺资料流域 缺资料流域

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 吴勇拓 , 李致家 , 戚振亚 et al. 基于水文模型的缺资料流域设计洪水计算 [J]. | 河海大学学报(自然科学版) , 2023 , 51 (6) : 1-8,17 .
MLA 吴勇拓 et al. "基于水文模型的缺资料流域设计洪水计算" . | 河海大学学报(自然科学版) 51 . 6 (2023) : 1-8,17 .
APA 吴勇拓 , 李致家 , 戚振亚 , 童睿轩 , 杨子菁 , 黄迎春 . 基于水文模型的缺资料流域设计洪水计算 . | 河海大学学报(自然科学版) , 2023 , 51 (6) , 1-8,17 .
Export to NoteExpress RIS BibTex

Version :

State updating in a distributed hydrological model by ensemble Kalman filtering with error estimation SCIE
期刊论文 | 2023 , 620 | JOURNAL OF HYDROLOGY
Abstract&Keyword Cite

Abstract :

For flood simulation in small-and medium-sized catchments, discharge observations may be used to update model states of a distributed hydrological model to improve performance. The ensemble Kalman filter (EnKF) has been widely used for hydrological assimilation due to its relative simplicity and robustness. An advantage of the EnKF is that it is easy to include different sources of uncertainty, therefore the choice of error model is crucial for the application of the EnKF assimilation. This paper describes an EnKF assimilation scheme for estimating error models using the maximum a posteriori estimation method (MAP). We test this scheme in two small and medium-sized catchments in China with different characteristics, and in addition compared the performance differences under two kinds of rainfall forcing. We show that MAP is beneficial in specifying error models and providing reliable ensemble spread. The assimilation scheme can effectively ameliorate the degradation of distributed hydrological model performance due to uncalibrated model parameters and/or poor quality of input data.

Keyword :

Distributed hydrological model Distributed hydrological model Ensemble Kalman filtering Ensemble Kalman filtering Flood Flood Hydrological assimilation Hydrological assimilation Maximum a posteriori estimation Maximum a posteriori estimation

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Gong, Junfu , Weerts, Albrecht H. , Yao, Cheng et al. State updating in a distributed hydrological model by ensemble Kalman filtering with error estimation [J]. | JOURNAL OF HYDROLOGY , 2023 , 620 .
MLA Gong, Junfu et al. "State updating in a distributed hydrological model by ensemble Kalman filtering with error estimation" . | JOURNAL OF HYDROLOGY 620 (2023) .
APA Gong, Junfu , Weerts, Albrecht H. , Yao, Cheng , Li, Zhijia , Huang, Yingchun , Chen, Yuanfang et al. State updating in a distributed hydrological model by ensemble Kalman filtering with error estimation . | JOURNAL OF HYDROLOGY , 2023 , 620 .
Export to NoteExpress RIS BibTex

Version :

降水预报产品在不同水文气象分区中小流域的适应性评估 PKU
期刊论文 | 2022 , 20 (6) , 1208-1219 | 南水北调与水利科技(中英文)
Abstract&Keyword Cite

Abstract :

以位于不同水文气象分区的屯溪流域和绥德流域为研究对象,选取TIGGE(THORPEX Interactive Garnd Global Ensemble)数据集中NCEP(National Centers for Environmental Prediction)、ECMWF(European Centre for Medium-range Weather Forecasts)、CMA(China Meteorological Administration)3种预报产品的2010—2015年控制预报数据,基于分位数映射法中的QUANT(non-parametric quantile mapping using empirical quantiles)法和RQUANT(non-parametric quantile mapping using robust empirical quantiles)法进行预报降雨修正,并采用多分类预报检验、连续型预报检验和概率型预报检验等方法,对不同水文气象分区、不同预报产品和不同修正方法进行比较与适用性分析;同时,以屯溪流域实测降雨为例,通过增加噪声项对降雨重采样,基于新安江模型分析降雨不确定性对水文模拟结果的影响.结果表明:在研究流域,所选的预报产品对无雨和小雨期的预报精度都较高,但随着降雨量的增加,各产品的预报能力均出现较为明显的下降.多分类和连续型检验表明绥德流域的降雨预报效果更佳,NCEP和ECMWF在研究流域的整体预报精度较高,CMA的整体预报精度在研究流域略低于其他产品.各产品在修正后大部分检验指标预报精度提高,其中:ECMWF在绥德流域修正后预报精度最高,对两种修正方法都有很好的适用性;在屯溪流域,NCEP和ECMWF在不同修正方法后各指标预报精度各有高低,CMA在修正后仅在大雨量级的TS评分预报精度高于其他产品.降雨的不确定性会对水文模拟产生消极影响,并导致参数的不确定性和水文模拟精度的下降.

Keyword :

TIGGE TIGGE 分位数映射法 分位数映射法 流域对比 流域对比 降雨不确定性 降雨不确定性 降雨评估 降雨评估

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 韦经豪 , 黄迎春 , 姚成 . 降水预报产品在不同水文气象分区中小流域的适应性评估 [J]. | 南水北调与水利科技(中英文) , 2022 , 20 (6) : 1208-1219 .
MLA 韦经豪 et al. "降水预报产品在不同水文气象分区中小流域的适应性评估" . | 南水北调与水利科技(中英文) 20 . 6 (2022) : 1208-1219 .
APA 韦经豪 , 黄迎春 , 姚成 . 降水预报产品在不同水文气象分区中小流域的适应性评估 . | 南水北调与水利科技(中英文) , 2022 , 20 (6) , 1208-1219 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 1 >

Export

Results:

Selected

to

Format:
Online/Total:826/7275810
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1