Query:
学者姓名:张卫波
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
针对可变截面涡轮增压器的开度与增压柴油机参数呈非线性关系的问题,提出一种基于反向传播神经网络和量子粒子群算法的非线性模型预测控制算法,通过调节涡轮增压器的开度,控制过量空气系数,从而实现柴油机的进气量与燃油消耗量的快速匹配,使转矩快速达到期望值。仿真分析表明:该方法相比于PID控制,可使增压柴油机更加平稳地完成转矩阶跃,并使增压柴油机具备转矩跟随能力。
Keyword :
BP神经网络 BP神经网络 可变截面涡轮增压器 可变截面涡轮增压器 增压柴油机 增压柴油机 过量空气系数 过量空气系数 量子粒子群算法 量子粒子群算法 非线性模型预测控制 非线性模型预测控制
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张卫波 , 梁昆 , 朱清 . 基于非线性模型预测的可变截面涡轮增压器控制 [J]. | 机械制造与自动化 , 2021 , 50 (01) : 124-127,160 . |
MLA | 张卫波 等. "基于非线性模型预测的可变截面涡轮增压器控制" . | 机械制造与自动化 50 . 01 (2021) : 124-127,160 . |
APA | 张卫波 , 梁昆 , 朱清 . 基于非线性模型预测的可变截面涡轮增压器控制 . | 机械制造与自动化 , 2021 , 50 (01) , 124-127,160 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
本发明涉及一种基于安全A*引导点的动态窗口的无人车实时全局路径规划方法,首先在A*算法的基础上提出了节点安全扩展策略以及路径节点二次优化方法,称之为安全A*算法,运用安全A*算法快速找出最优的安全虚拟目标点;第二,以上述的虚拟目标点作为动态窗口法的局部目标,进行速度采样,实现路径规划与避障,并在MATLAB环境下进行仿真,结果表明无人车可以在全局路径的引领下,安全平稳的避开障碍物,验证了本发明方法的安全性和稳定性。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张卫波 , 黄绍斌 , 陈慧鸿 et al. 基于安全A*引导点的动态窗口的无人车实时全局路径规划方法 : CN202110842405.X[P]. | 2021-07-26 . |
MLA | 张卫波 et al. "基于安全A*引导点的动态窗口的无人车实时全局路径规划方法" : CN202110842405.X. | 2021-07-26 . |
APA | 张卫波 , 黄绍斌 , 陈慧鸿 , 黄志鹏 , 罗星 , 封士宇 . 基于安全A*引导点的动态窗口的无人车实时全局路径规划方法 : CN202110842405.X. | 2021-07-26 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
本发明涉及一种考虑转角约束的无碰撞检测快速随机树全局路径规划方法。包括:区域区分采样与启发式可变范围采样策略;考虑车辆姿态与下一路径点夹角约束的改进目标偏向临近点采样策略;无需碰撞检测的随机树扩展策略。本发明方法可提高有效采样次数与采样效率,并且在邻近点选择方法中考虑车辆姿态与下一路径点夹角约束及目标点距离因素,能够快速高效地规划符合车辆运动学角度约束的路径。后对规划路径进行路径简化剔除冗余节点,并使用杜宾斯曲线拟合剩余路径简化点,从而得到曲率连续的平滑路径。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张卫波 , 陈慧鸿 , 黄绍斌 et al. 考虑转角约束的无碰撞检测快速随机树全局路径规划方法 : CN202110879163.1[P]. | 2021-08-02 . |
MLA | 张卫波 et al. "考虑转角约束的无碰撞检测快速随机树全局路径规划方法" : CN202110879163.1. | 2021-08-02 . |
APA | 张卫波 , 陈慧鸿 , 黄绍斌 , 黄志鹏 , 罗星 . 考虑转角约束的无碰撞检测快速随机树全局路径规划方法 : CN202110879163.1. | 2021-08-02 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
本发明涉及一种基于危险系数的自适应动态窗口无人车实时避障方法。包括:初始化无人车状态信息;通过传感器获取动态障碍物的状态信息;根据采样的线速度和角速度,计算可达动态速度矢量窗口;根据获取的状态信息建立动态障碍物的危险系数;根据危险系数判断是否要开始避障;若需要避障则根据动态障碍物的危险指数自适应的调整评价参数;在可达速度矢量窗口中,根据评价函数选择最佳避障速度矢量;输出最佳避障速度的大小和方向;重复以上循环,直至无人车避开动态障碍物到达目标。本发明通过建立基于动态障碍物运动状态的危险系数,再基于危险系数实时的,动态的调整动态窗口法的评价参数,实现了无人车在动态环境下的实时避障。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张卫波 , 黄绍斌 , 陈慧鸿 et al. 一种基于危险系数的自适应动态窗口无人车实时避障方法 : CN202110879348.2[P]. | 2021-08-02 . |
MLA | 张卫波 et al. "一种基于危险系数的自适应动态窗口无人车实时避障方法" : CN202110879348.2. | 2021-08-02 . |
APA | 张卫波 , 黄绍斌 , 陈慧鸿 , 黄志鹏 , 罗星 . 一种基于危险系数的自适应动态窗口无人车实时避障方法 : CN202110879348.2. | 2021-08-02 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
采用快速搜索随机树(RRT)算法进行路径规划时,在存在大量随机障碍物的复杂环境下,规划出的路径曲折且算法无法快速收敛,不能满足智能车路径规划的要求.为了实现智能车路径规划,提出一种基于RRT的运动规划算法——同心圆RRT算法.该算法在RRT算法的基础上结合智能车行驶时自身运动学约束,引入同心圆采样策略和邻近点选择方法.同心圆采样策略以目标点为同心圆的圆心,利用同心圆系数m控制同心圆的疏密程度,在同心圆上生成随机点以便确定下一路径点.邻近点选择方法考虑车辆运动学约束及目标点距离因素,在满足车辆运动学约束的前提下,计算邻近系数,将最小邻近系数对应的随机树节点作为邻近点;针对得到的规划路径,进一步提出基于车辆运动学约束下的路径简化方法,对得到的路径进行简化并使用3次B样条曲线对路径平滑处理,生成一条平滑且可执行的路径.研究结果表明:m=0.5~1.5时,提出的算法规划出路径所需时间最少;车辆姿态与下一路径点的夹角约束值越大,规划出路径所需时间越少,在夹角为35°时趋于稳定;在相同的环境中,提出的算法所规划的路径质量相比于RRT算法、目标偏向RRT算法及改进RRT*算法有显著提高,规划出路径所需时间及路径长度相比于RRT算法分别降低了43.1%和18.7%,相比于目标偏向RRT算法分别降低了7.3%和15.5%,相比于改进RRT*算法分别降低了29.6%和7%;智能小车的实车测试试验验证了该算法的有效性和实用性.
Keyword :
同心圆RRT 同心圆RRT 智能车 智能车 汽车工程 汽车工程 路径规划 路径规划 运动学约束 运动学约束
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张卫波 , 肖继亮 . 改进RRT算法在复杂环境下智能车路径规划中的应用 [J]. | 中国公路学报 , 2021 , 34 (3) : 225-234 . |
MLA | 张卫波 et al. "改进RRT算法在复杂环境下智能车路径规划中的应用" . | 中国公路学报 34 . 3 (2021) : 225-234 . |
APA | 张卫波 , 肖继亮 . 改进RRT算法在复杂环境下智能车路径规划中的应用 . | 中国公路学报 , 2021 , 34 (3) , 225-234 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
When a rapidly-exploring random tree (RRT) algorithm is used for path planning in a complicated environment with many random barriers, the convergence is slow and the obtained path is usually twisted. To meet the requirements of path planning of an intelligent vehicle in a complicated environment, a motion planning algorithm, named homocentric circles RRT algorithm, based on a fast searching random tree is proposed. Based on basic RRT and combined with the kinematic constraints of the intelligent vehicle, the homocentric circles sampling strategy and adjacent point selection method were introduced in the proposed algorithm. The homocentric circles sampling considers the target point as the center; the homocentric circles coefficient m was used to adjust the density of the homocentric circles to generate random points to determine the next path point. Considering the vehicle kinematic constraints and target distance factor, the adjacent point selection method was adopted to calculate the proximity coefficient, and the random tree node corresponding to the minimum proximity coefficient was taken as the adjacent point. For the planned path, a path processing method based on vehicle kinematic constraints was used to simplify the obtained path, and the cubic B-spline curve was employed to optimize the path to generate a smooth and executable path. The results show that the algorithm takes the least time to find the path when the coefficient of homocentric circles is in the range of 0.5-1.5. A larger constraint value for the angle of vehicle attitude and next path point implies that less time is used to find the path and it tends to be stable when the angle is 35°. Under the same environment, the quality of the planned path obtained using the proposed RRT improves considerably compared with the basic RRT, target bias RRT, and updated RRT. Compared with the RRT, target bias RRT, and updated RRT algorithms, the required time and length of the planned path of the proposed RRT algorithm are lower by 43.1% and 18.7%, 7.3% and 15.5%, and 29.6% and 7% respectively. Finally, the effectiveness and practicability of the algorithm were verified through the intelligent vehicle experiment. © 2021, Editorial Department of China Journal of Highway and Transport. All right reserved.
Keyword :
Curve fitting Curve fitting Intelligent vehicle highway systems Intelligent vehicle highway systems Kinematics Kinematics Trees (mathematics) Trees (mathematics) Vehicles Vehicles
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Wei-Bo , Xiao, Ji-Liang . Application of Improved RRT Algorithm in Intelligent Vehicle Path Planning Under Complicated Environment [J]. | China Journal of Highway and Transport , 2021 , 34 (3) : 225-234 . |
MLA | Zhang, Wei-Bo et al. "Application of Improved RRT Algorithm in Intelligent Vehicle Path Planning Under Complicated Environment" . | China Journal of Highway and Transport 34 . 3 (2021) : 225-234 . |
APA | Zhang, Wei-Bo , Xiao, Ji-Liang . Application of Improved RRT Algorithm in Intelligent Vehicle Path Planning Under Complicated Environment . | China Journal of Highway and Transport , 2021 , 34 (3) , 225-234 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
本发明提出一种基于粒子群算法的障碍物自我保护人工势场法局部路径规划方法,引入粒子群算法,并结合智能车在转弯过程中存在最小转弯半径的转弯约束,即在优化过程中加入最大转向角的约束,对初步规划的路线进行曲线优化,并建立相应适应度函数,进一步采用粒子群算法限制寻优范围并找到符合智能车转向特性的航向角,通过粒子不断迭代得到最优的航向角度,从而建立粒子群障碍物自我保护人工势场法避开障碍物,找到符合智能车转向约束的最优路径。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张卫波 , 温珍林 , 封士宇 et al. 基于粒子群算法的障碍物自我保护人工势场法局部路径规划方法 : CN202111146883.3[P]. | 2021-09-28 . |
MLA | 张卫波 et al. "基于粒子群算法的障碍物自我保护人工势场法局部路径规划方法" : CN202111146883.3. | 2021-09-28 . |
APA | 张卫波 , 温珍林 , 封士宇 , 黄晓军 , 黄赐坤 . 基于粒子群算法的障碍物自我保护人工势场法局部路径规划方法 : CN202111146883.3. | 2021-09-28 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
本发明涉及一种基于曲率约束融合势场法的D*Lite无人车局部路径规划方法,在D*Lite算法的基础上增加距离函数和子代节点转角约束,让算法从终点到起点反向规划出一条启发值最小的路径,规划出的路径作为算法的全局路径,为局部动态路径规划提供一定的数据基础;从起点开始,以新的子代节点拓展方式获得子代节点,同时以当前节点为圆心,R为半径建立移动窗口,当移动窗口内出现动态障碍物时,在当前节点建立势力场方程,并将合力的方向加入到子代节点的选取中;无人车以一定频率反馈的位置信息和转角信息,根据无人车反馈信息进行重规划;输出最佳的速度的大小和方向驱动无人车行驶。本发明规划出的路径满足车辆运动学模型,并具有良好的动态避障能力。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张卫波 , 罗星 , 黄绍斌 et al. 一种基于曲率约束融合势场法的D*Lite无人车局部路径规划方法 : CN202110965102.7[P]. | 2021-08-21 . |
MLA | 张卫波 et al. "一种基于曲率约束融合势场法的D*Lite无人车局部路径规划方法" : CN202110965102.7. | 2021-08-21 . |
APA | 张卫波 , 罗星 , 黄绍斌 , 陈慧鸿 , 黄志鹏 . 一种基于曲率约束融合势场法的D*Lite无人车局部路径规划方法 : CN202110965102.7. | 2021-08-21 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Shop scheduling is a significant factor affecting the ability of manufacturers of printed circuit board (PCB) prototyping assemblies to remain profitable and meet the needs of customers. This scheduling is complicated and involves various factors; thus, the shop scheduling problem of a PCB prototyping assembly is regarded as a multiobjective permutation flow shop scheduling problem (MOPFSP). A mathematical model with four objective functions is built based on the characteristics of a PCB prototyping assembly shop. In this article an aggregation-based approach is designed to aggregate multiple objective function values into the similarity of intuitionistic fuzzy sets (sIFSs). This approach is adopted as a fitness function assignment strategy and is combined with the optimal foraging algorithm (OFA) to build a multiobjective evolutionary algorithm: the OFA based on sIFSs (OFA-sIFSs). To verify the performance of OFA-sIFSs, six congress on evolutionary computation benchmark test functions, ten MOPFSP benchmark instances and a practical problem for a PCB prototyping assembly are solved by OFA-sIFSs and three state-of-the-art algorithms. Three types of similarity measures are evaluated. During the process of testing, four performance metrics, statistical analysis, and business software are employed. The results of this study suggest that OFA-sIFSs can be used to solve the MOPFSP and have better performances compared with the other three algorithms.
Keyword :
Fuzzy sets Fuzzy sets Intuitionistic fuzzy sets (IFSs) Intuitionistic fuzzy sets (IFSs) Job shop scheduling Job shop scheduling Linear programming Linear programming Mathematical model Mathematical model multiobjective optimization multiobjective optimization multiobjective permutation flow shop scheduling problem (MOPFSP) multiobjective permutation flow shop scheduling problem (MOPFSP) optimal foraging algorithm (OFA) optimal foraging algorithm (OFA) Optimization Optimization printed circuit board (PCB) prototyping assembly printed circuit board (PCB) prototyping assembly Software algorithms Software algorithms
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Wei-Bo , Zhu, Guang-Yu . A Multiobjective Optimization of PCB Prototyping Assembly With OFA Based on the Similarity of Intuitionistic Fuzzy Sets [J]. | IEEE TRANSACTIONS ON FUZZY SYSTEMS , 2021 , 29 (7) : 2054-2061 . |
MLA | Zhang, Wei-Bo et al. "A Multiobjective Optimization of PCB Prototyping Assembly With OFA Based on the Similarity of Intuitionistic Fuzzy Sets" . | IEEE TRANSACTIONS ON FUZZY SYSTEMS 29 . 7 (2021) : 2054-2061 . |
APA | Zhang, Wei-Bo , Zhu, Guang-Yu . A Multiobjective Optimization of PCB Prototyping Assembly With OFA Based on the Similarity of Intuitionistic Fuzzy Sets . | IEEE TRANSACTIONS ON FUZZY SYSTEMS , 2021 , 29 (7) , 2054-2061 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
基于AVL-BOOST软件建立涡轮增压柴油发动机仿真模型,选择电动增压子系统的连接方式,进而对涡轮增压柴油发动机电动增压子系统进行匹配设计.通过混合增压试验台架对匹配设计后的涡轮增压柴油发动机进行动力性、经济性与排放性试验,确认柴油发动机低速工况性能有明显提高,碳烟排放和氮氧化物排放减少.
Keyword :
匹配设计 匹配设计 增压 增压 柴油发动机 柴油发动机
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 寿磊 , 余旭东 , 谢栩聪 et al. 涡轮增压柴油发动机电动增压子系统的匹配设计 [J]. | 机械制造 , 2020 , 58 (8) : 49-53,57 . |
MLA | 寿磊 et al. "涡轮增压柴油发动机电动增压子系统的匹配设计" . | 机械制造 58 . 8 (2020) : 49-53,57 . |
APA | 寿磊 , 余旭东 , 谢栩聪 , 张卫波 . 涡轮增压柴油发动机电动增压子系统的匹配设计 . | 机械制造 , 2020 , 58 (8) , 49-53,57 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |