Indexed by:
Abstract:
Sustainable habitat construction on Mars faces significant challenges, including low atmospheric pressure hindering hydration, reduced gravity complicating compaction, and large habitat pressure differentials. This study presents an integrated In-Situ Resource Utilization (ISRU) approach combining high-strength regolith bricks, hydration-free sulfur bonding, and a modular pyramid habitat design validated by Finite Element Analysis (FEA). Optimized mechanical compaction (40 MPa) of nano-SiO2-enhanced Martian regolith simulant effectively bypasses hydration constraints, achieving compressive strengths exceeding 20 MPa even at ambient temperatures. A systematic parameter study (pressure, particle size, water content, temperature) yielded predictive design equations and demonstrated potential strength enhancement up to 44.5 MPa with thermal treatment (1000 degrees C). Furthermore, a robust, hydration-free sulfur-based mortar was developed for modular assembly; optimized flat-cut interfaces yielded bond strengths exceeding 2.0 MPa, crucially shifting the failure mode from the bond interface to the brick material itself (ensuring a reliable minimum tensile capacity >1.2 MPa). Leveraging these advancements, a pyramid-shaped habitat module, advantageous for Martian environmental loads (including a 101.3 kPa internal pressure differential and 3.71 m/s(2) gravity), was designed. FEA, incorporating experimentally derived material properties (e.g., 22 MPa compressive strength, 1.2 MPa tensile/bond capacity), confirmed the structural integrity, with maximum predicted tensile stress (1.15 MPa) remaining below the bond limit. This research provides a comprehensive, experimentally validated framework-from material development and bonding to structural application-for constructing resource-efficient, durable habitats on Mars, significantly advancing solutions for sustainable extraterrestrial infrastructure.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF BUILDING ENGINEERING
Year: 2025
Volume: 111
6 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: