Indexed by:
Abstract:
Since the effectiveness of the flexible current arc suppression method heavily relies on the accurate measurement of the distribution line-to-ground parameters, the suppression of single line-to-ground (SLG) fault current may deteriorate due to factors such as line switching and other disturbances during SLG fault arc suppression. Additionally, during SLG fault arc suppression, promptly identifying the fault type and rapidly deactivating the flexible arc suppression device (FASD) can reduce the overvoltage risk in non-faulted phase devices. To address these issues, this paper presents a parameter identification method based on recursive least squares (RLS) while a variable forgetting factor strategy is introduces to enhance the RLS algorithm's disturbance rejection capability. Simulations verify that the variable forgetting factor recursive least squares (VFF-RLS) algorithm can accurately identify distribution line-to-ground parameters in real time and effectively suppress SLG fault current. The online identification of grounding transition conductance is simultaneously used to determine the fault type and quickly detect when the SLG fault has been cleared.
Keyword:
Reprint 's Address:
Email:
Source :
PROTECTION AND CONTROL OF MODERN POWER SYSTEMS
ISSN: 2367-2617
Year: 2025
Issue: 4
Volume: 10
Page: 103-115
8 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: