Indexed by:
Abstract:
Photosynthesis of H2O2 from O-2 and H2O with inexhaustible sunlight as an energy source is a promising approach. However, the photocatalytic performance of pristine polymeric carbon nitride (PCN) is extremely restrained due to the rapid recombination of photo-generated electrons and holes, and slow surface reaction processes. Herein, a new strategy is developed to rationally integrate N, S-co-doped carbon (C-NS), and CoS2 on cyano-rich PCN (PCN-Cy) for photosynthesis of H2O2 under ambient conditions. The engineering with cyano groups (electron-withdrawing groups) promotes the bulk charge separation of PCN. Experimental results reveal that the CoS2 co-catalyst not only serves as an electron acceptor to extract charges from the bulk but also functions as an active site to promote the 2-e(-) ORR process. Besides, the N, S-co-doped carbon performs as an electron channel to promote migration of charges at the interface of PCN-Cy and CoS2. Accordingly, the as-synthesized cyano-rich PCN photocatalyst integrated with N, S-co-doped carbon and CoS2 exhibits a remarkable activity of 321.9 mu m h(-1) for photocatalytic production of H2O2, which is 44.9 times higher than that of the pristine PCN.
Keyword:
Reprint 's Address:
Source :
ADVANCED FUNCTIONAL MATERIALS
ISSN: 1616-301X
Year: 2025
1 8 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: