Indexed by:
Abstract:
Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) into high-value 2,5-furandicarboxylic acid (FDCA). However, the rational design of efficient electrocatalysts with precisely tailored structure–activity correlations remains a critical challenge. Herein, we report a hierarchically structured self-supporting electrode (Vo-NiCo(OH)2-NF) synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue (NiCo-PBA) precursor, in which oxygen vacancy (Vo)-rich Co-doped Ni(OH)2 nanosheet arrays are vertically aligned on nickel foam (NF), creating an interconnected conductive network. When evaluated for the HMF oxidation reaction (HMFOR), Vo-NiCo(OH)2-NF exhibits exceptional electrochemical performance, achieving near-complete HMF conversion (99%), ultrahigh FDCA Faradaic efficiency (97.5%), and remarkable product yield (96.2%) at 1.45 V, outperforming conventional Co-doped Ni(OH)2 (NiCo(OH)2-NF) and pristine Ni(OH)2 (Ni(OH)2-NF) electrodes. By combining in situ spectroscopic characterization and theoretical calculations, we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers, favor the formation of high-valent Ni3+ species, and optimize HMF adsorption, thereby improving the HMFOR performance. This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems. © 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Energy Chemistry
ISSN: 2095-4956
Year: 2025
Volume: 108
Page: 558-566
1 4 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: