Indexed by:
Abstract:
Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) into high-value 2,5furandicarboxylic acid (FDCA). However, the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge. Herein, we report a hierarchically structured self-supporting electrode (Vo-NiCo(OH)2-NF) synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue (NiCo-PBA) precursor, in which oxygen vacancy (Vo)rich Co-doped Ni(OH)2 nanosheet arrays are vertically aligned on nickel foam (NF), creating an interconnected conductive network. When evaluated for the HMF oxidation reaction (HMFOR), Vo-NiCo(OH)2-NF exhibits exceptional electrochemical performance, achieving near-complete HMF conversion (99%), ultrahigh FDCA Faradaic efficiency (97.5%), and remarkable product yield (96.2%) at 1.45 V, outperforming conventional Co-doped Ni(OH)2 (NiCo(OH)2-NF) and pristine Ni(OH)2 (Ni(OH)2-NF) electrodes. By combining in situ spectroscopic characterization and theoretical calculations, we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers, favor the formation of high-valent Ni3+ species, and optimize HMF adsorption, thereby improving the HMFOR performance. This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems. (c) 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Keyword:
Reprint 's Address:
Email:
Source :
JOURNAL OF ENERGY CHEMISTRY
ISSN: 2095-4956
Year: 2025
Volume: 108
Page: 558-566
1 4 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: