Abstract:
为克服以往岩石抗剪强度参数估测方法无法反映并量化其不确定性的问题,提出一种基于高斯过程回归(Gaussian processregression,GPR)的岩石抗剪强度参数不确定性估测方法,实现具有概率意义的不确定性分析。基于岩石强度参数数据集,利用高斯过程理论建立不同核函数下岩石单轴抗压强度(uniaxial compressive strength,UCS)和抗拉强度(uniaxial tensilestrength,UTS)与抗剪强度参数的映射关系。通过最大化对数边缘似然函数优化GPR模型超参数,然后根据预测效果与不确定性程度,确定合适的核函数及其GPR模型。结果表明,在给定UCS和UTS数据下,建议采用Matérn核函数构建黏聚力GPR模型,采用有理二次核函数构建内摩擦角GPR模型。对比传统机器学习方法,GPR方法不仅可准确地预测岩石抗剪强度参数,还给出了预测结果的不确定性程度,具有较强的科学性和可解释性,证明了GPR模型的可行性与有效性。
Keyword:
Reprint 's Address:
Email:
Source :
岩土力学
Year: 2024
Issue: S1
Volume: 45
Page: 415-423
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: