Indexed by:
Abstract:
Numerical investigation was carried out to study the ceiling gas temperature distribution under the combination effect of tunnel slope and longitudinal fire location in a naturally ventilated tunnel. Results show that in horizontal tunnel with fire located in the tunnel's longitudinal center, the ceiling gas temperature is symmetric distributing in upstream and downstream. With fire moves to the right (downstream) portal, the ceiling gas temperature in upstream tunnel decays faster than that in downstream, and vice versa. For inclined tunnels (going uphill), the ceiling gas temperature is asymmetrically distributed even the fire is located in the longitudinal center. Interestingly, with fire moves to downstream, it would become symmetric again and then it returns to asymmetric. Therefore, the tunnel slope and the longitudinal fire location have complex combination effect on the ceiling gas temperature distribution. More interestingly, with the fire moving from upstream to downstream in an uphill tunnel, the evolution of maximum ceiling gas temperature shows two tendencies, depending on the tunnel slopes. For smaller tunnel slopes, the maximum ceiling gas temperature first increases and then decreases, while it increases monotonically for larger tunnel slopes. Consequently, the critical tunnel slope for the change of two tendencies was proposed, which shows the variation of the relative strength of the two effects. For tunnel slopes lower than the critical value, the two effects are comparable. For tunnel slopes larger than the critical value, the tunnel slope is the dominant effect. In addition, the empirical equation of offset distance was proposed as intermediate variable to characterize the combination effects on the maximum ceiling gas temperature. By taking the absolute value of offset distance as characteristic parameter, the predicting equation for the maximum ceiling gas temperature was proposed. © 2025 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Tunnelling and Underground Space Technology
ISSN: 0886-7798
Year: 2025
Volume: 163
6 . 7 0 0
JCR@2023
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: