Indexed by:
Abstract:
Tensegrity metamaterials are considered superior to many traditional materials in engineering due to their exceptional variable stiffness, adaptive load-bearing capabilities, and adjustable morphing properties. This paper presents a novel negative Poisson's ratio tensegrity metamaterial featuring a substructure composed of a D-bar tensegrity structure and a rotating double-square negative Poisson's ratio structure. Firstly, we establish the geometric model of the D-bar tensegrity structure and determine the pretension relationships among its tension elements. We then describe the composition of the tensegrity metamaterials and their performance metrics. The stress-strain behavior of tension elements is characterized through tensile tests. Further experiments explore the effects of structural angle and pretension on the compressive load-displacement characteristics of the structure. Then, the effect of the structural angle of tensegrity metamaterial substructures on energy absorption is analyzed. Additionally, the impact resistance of tensegrity metamaterials with negative Poisson ratios shows significant compressive and impact durability. Their potential for enhancing drone protection and environmental adaptability is also demonstrated.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SMART MATERIALS AND STRUCTURES
ISSN: 0964-1726
Year: 2025
Issue: 5
Volume: 34
3 . 7 0 0
JCR@2023
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: