Abstract:
对电力网络鲁棒性进行评估与预测,有利于网络管理人员感知网络系统运行现状,及时采取措施应对可能的风险.为此提出了一种基于改进鲸鱼优化算法的电力调度数据网鲁棒性预测模型.首先,构建了电力调度数据网鲁棒性指标体系,并采用字段提取及公式映射等方法,实现了面向指标体系的数据降维处理;此外,进一步研究了基于混沌映射与自适应权重的WOA-BP改进算法(CA-WOA-BP),实现了电力网络鲁棒性预测方法.实验结果表明,与WOA-BP算法相比,所提出的改进算法加快了预测模型的收敛速度,并克服了陷入局部最优的情况,同时将预测值误差百分比降低了5.3%,有助于用户更准确及时地感知电力调度数据网系统鲁棒性的态势.
Keyword:
Reprint 's Address:
Email:
Source :
南方电网技术
ISSN: 1674-0629
Year: 2025
Issue: 2
Volume: 19
Page: 10-18
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: