Indexed by:
Abstract:
Covalent organic frameworks (COFs) containing dioxin-linkages are highly valued for their exceptional chemical stability, which is essential for practical use. However, research on dioxin-based COFs remains limited. Herein, a unique nonplanar 2D COF, designated as TCP-COF, constructed from catechol-porphyrin units interconnected by 1,4-dioxin bonds, exhibiting a staggered AAA stacking pattern, is presented. Remarkably, TCP-COF can undergo in situ exfoliation to produce ultrathin 2D nanosheets when it is utilized as a photocatalyst for hydrogen peroxide (H2O2) generation in water and air, without the need for additives. This exfoliation process is primarily driven by the distortion of porphyrin units and weak π–π interaction between adjacent layers in TCP-COF. The resultant ultrathin nanosheets significantly reinforce catalytic activity, achieving a photocatalytic H2O2 production rate of 3077 µmol g−1 h−1. The mechanism underlying H2O2 photosynthesis is further explored through a combination of experimental analyses and theoretical calculations. This study provides valuable insights for the development of efficient COF-based photocatalysts for H2O2 evolution. © 2025 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Small
ISSN: 1613-6810
Year: 2025
Issue: 14
Volume: 21
1 3 . 0 0 0
JCR@2023
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: