Indexed by:
Abstract:
The stochasticity of vehicle velocity poses a significant challenge to enhancing fuel cell energy management strategy (EMS). Under these circumstances, a self-learning Markov algorithm-based EMS with stochastic velocity prediction capability is proposed. First, building upon the traditional offline-trained Markov model, a real-time self-learning Markov predictor (SLMP) is proposed, which collects historical data during the vehicle's driving process and continuously updates the state transition matrix on a rolling basis. It provides excellent prediction performance under stochastic driving cycles. and the impact of different prediction time-steps is analyzed. Subsequently, by employing sequential quadratic programming for optimal power allocation, the Stochastic Velocity-Prediction Conscious EMS for fuel cell hybrid electrical vehicle based on SLMP is constructed. Finally, the predictors and EMSs based on back-propagation neural network and offline-trained Markov are selected for performance comparison. The validation results indicate that the performance of SLMP improves as driving mileage accumulates. Meanwhile, the proposed Stochastic Velocity-Prediction Conscious EMS significantly improves economic performance in different driving cycles. Hardware-in-the-Loop experiments further validate the superior fuel cell efficiency and robustness of the proposed EMS. The key contribution lies in the real-time adaptability of the SLMP, which ensures improved prediction accuracy and economic performance as driving mileage accumulates. © 2025 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Energy
ISSN: 0360-5442
Year: 2025
Volume: 320
9 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: