Indexed by:
Abstract:
In this paper, we study the chaotic dynamics of an optomechanical systems coupled to a non-Markovian environment. The master equation of the system is derived beyond the Markovian approximation and the maximum Lyapunov exponent is employed to quantify the generation of chaos. In contrast to the majority of existing studies on chaos generation in optomechanical systems, our work highlights that the influence exerted by the properties of the environment can be of equivalent significance to that of the system parameters, and in certain cases, the environmental parameters may be even more important. The numerical results show that the memory time and central frequency of the environment play crucial roles in the generation of chaos, and they can even determine whether chaos occurs. In addition, we also investigate the influence of system parameters and compare them with the environmental parameters. We hope the results presented in this paper open a new direction for the research on chaos generation and attract more attentions on the influence of the properties of environments. © 2025 Astro Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Keyword:
Reprint 's Address:
Source :
Laser Physics
ISSN: 1054-660X
Year: 2025
Issue: 4
Volume: 35
1 . 2 0 0
JCR@2023
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: