Indexed by:
Abstract:
The triggering of fast hydrogen spillover through regulating the charge rearrangement of the metal-support serves as a crucial mechanism for decoupling the activity of HER catalysts from the adsorption properties, which not only contributes to enhancing the performance of the catalysts but also facilitates the production of green hydrogen. Herein, we tailor the electronic interaction between two-dimensional (2D) nitrogen-doped MoC (N-MoC) nanosheets and an ultra-low content of Pt nanoclusters (1 wt%) to trigger reverse hydrogen spillover and modulate the electronic structure of Pt, thus achieving efficient and stable HER. Compared to Pt/C (0.229 A mgPt-1), Pt/N-MoC demonstrates a mass activity of 12.945 A mgPt-1, representing an enhancement of nearly 57.5 times. Notably, the excellent electrocatalytic performance was verified in the proton exchange membrane water electrolyzer configuration. Combining experimental and theoretical analysis, an ultra-low load of Pt nanocluster (1 wt%) integrated with N-MoC nanosheets can induce a charge transfer from N-MoC to Pt, thus modulating the d-band center of Pt to improve the hydrogen adsorption properties and achieving fast hydrogen desorption (Delta G = 0.019 eV); furthermore, a small difference in work function between Pt nanoclusters and the N-MoC were achieved to dilute charge accumulation between the metal-support interface, thus reducing the energy barrier of hydrogen spillover.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2025
Volume: 687
Page: 423-431
9 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: