Indexed by:
Abstract:
ObjectiveTo develop a multimodal imaging atlas of a rat brain-computer interface (BCI) that incorporates brain, arterial, bone tissue and a BCI device using mixed reality (MR) for three-dimensional (3D) visualization.MethodsAn invasive BCI was implanted in the left visual cortex of 4-week-old Sprague-Dawley rats. Multimodal imaging techniques, including micro-CT and 9.0 T MRI, were used to acquire images of the rat cranial bone structure, vascular distribution, brain tissue functional zones, and BCI device before and after implantation. Using 3D-slicer software, the images were fused through spatial transformations, followed by image segmentation and 3D model reconstruction. The HoloLens platform was employed for MR visualization.ResultsThis study constructed a multimodal imaging atlas for rats that included the skull, brain tissue, arterial tissue, and BCI device coupled with MR technology to create an interactive 3D anatomical model.ConclusionsThis multimodal 3D atlas provides an objective and stable reference for exploring complex relationships between brain tissue structure and function, enhancing the understanding of the operational principles of BCIs. This is the first multimodal 3D imaging atlas related to a BCI created using Sprague-Dawley rats.
Keyword:
Reprint 's Address:
Source :
CURRENT MEDICAL SCIENCE
ISSN: 2096-5230
Year: 2025
Issue: 2
Volume: 45
Page: 194-205
2 . 0 0 0
JCR@2023
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: