Indexed by:
Abstract:
Math word problem (MWP) represents a critical research area within reading comprehension, where accurate comprehension of math problem text is crucial for generating math expressions. However, current approaches still grapple with unresolved challenges in grasping the sensitivity of math problem text and delineating distinct roles across various clause types, and enhancing numerical representation. To address these challenges, this paper proposes a Numerical Magnitude Aware Multi-Channel Hierarchical Encoding Network (NMA-MHEA) for math expression generation. Firstly, NMA-MHEA implements a multi-channel hierarchical context encoding module to learn context representations at three different channels: intra-clause channel, inter-clause channel, and context-question interaction channel. NMA-MHEA constructs hierarchical constituent-dependency graphs for different levels of sentences and employs a Hierarchical Graph Attention Neural Network (HGAT) to learn syntactic and semantic information within these graphs at the intra-clause and inter-clause channels. NMA-MHEA then refines context clauses using question information at the context-question interaction channel. Secondly, NMA-MHEA designs a number encoding module to enhance the relative magnitude information among numerical values and type information of numerical values. Experimental results on two public benchmark datasets demonstrate that NMA-MHEA outperforms other state-of-the-art models. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Neural Computing and Applications
ISSN: 0941-0643
Year: 2025
Issue: 3
Volume: 37
Page: 1651-1672
4 . 5 0 0
JCR@2023
Affiliated Colleges: