Indexed by:
Abstract:
Mobile Edge Computing (MEC) can augment the capability of Internet of Things (IoT) mobile devices (MDs) through offloading the computation-intensive tasks to their adjacent servers. Synergistic computation offloading among MEC servers is one possible solution to reduce the completion time of system during peak hours. However, due to the large number of servers and the long distance between base stations (BSs), synchronizing the information of all servers takes a long time, which is not applicable to the fluctuant environments. Meanwhile, each server from different BSs is typically selfish and rational, and can only obtain the imperfect information from its adjacent servers, which is a challenge for computation offloading among servers from a global perspective. This article proposes a game-based computation offloading scheme with imperfect information in multi-edge environments. First, a non-cooperative game with imperfect information is designed to analyze the complex interactions during synergistic computation offloading among MEC servers. Second, a Synergistic Balancing Offloading Algorithm (SBOA) through distributed decision-making manner to obtain the optimal offloading decision is proposed, which guarantees that the game converges to a Nash Equilibrium (NE) point. Extensive simulation results reveal the fast convergence of SBOA. As the percentage of high-load servers rises and the number of heavy tasks increases, SBOA performs better than other benchmark algorithms in terms of timeliness, effectiveness, and system completion time.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON SERVICES COMPUTING
ISSN: 1939-1374
Year: 2025
Issue: 1
Volume: 18
Page: 1-14
5 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3