Indexed by:
Abstract:
Multi-view learning has demonstrated strong potential in processing data from different sources or viewpoints. Despite the significant progress made by Multi-view Graph Neural Networks (MvGNNs) in exploiting graph structures, features, and representations, existing research generally lacks architectures specifically designed for the intrinsic properties of multi-view data. This leads to models that still have deficiencies in fully utilizing consistent and complementary information in multi-view data. Most of current research tends to simply extend the single-view GNN framework to multi-view data, lacking in-depth strategies to handle and leverage the unique properties of these data. To address this issue, we propose a simple yet effective MvGNN framework called Multi-view Representation Learning with Decoupled private and shared Propagation (MvRL-DP). This framework enables multi-view data to be effectively processed as a whole by alternating private and shared operations to integrate cross-view information. In addition, to address possible inconsistencies between views, we present a discriminative loss that promotes class separability and prevents the model from being misled by noise hidden in multi-view data. Experiments demonstrate that the proposed framework is superior to current state-of-the-art methods in the multi-view semi-supervised classification task. © 2025 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Knowledge-Based Systems
ISSN: 0950-7051
Year: 2025
Volume: 310
7 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: