Indexed by:
Abstract:
The doping of metals onto the inorganic non-metallic catalyst g-C3N4 facilitates the reduction of CO2 to C1 and C2 products, representing an effective method for reducing atmospheric carbon dioxide and mitigating global warming. This paper investigates the stability and catalytic activity of g-C3N4 doped with Fe, Co, Ni, and Cu using density functional theory (DFT). The optimal reduction pathways of CO2 at different metal sites are analyzed. The results show that bimetallic doping exhibits a synergistic effect compared to traditional metal doping, significantly enhancing the visible light response range of g-C3N4, promoting the adsorption and activation of CO2, and lowering the Gibbs free energy barrier of the reduction intermediates. Of the materials studied, Co2@g-C3N4 and Ni2@g-C3N4 require higher energy and show poor CO2 activation performance. In contrast, Fe2@g-C3N4's site1 and site2 display superior catalytic performance with activation energy barriers of 0.74 eV and 0.78 eV, respectively. Cu2@g-C3N4, on the other hand, shows favorable performance only at site1, with an activation energy barrier of 0.63 eV. This catalyst is expected to serve as an effective tool for CO2 reduction, providing a new strategy for the design and development of more efficient and selective CO2 reduction catalysts. © 2024 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Molecular Catalysis
ISSN: 2468-8231
Year: 2025
Volume: 572
3 . 9 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: